Учебное пособие по курсу «Нейроинформатика»
Шрифт:
Составные интерпретатор ответа и оценка
При использовании нейронных сетей для решения различных задач возникает необходимость получать от сети не один ответ, а несколько. Например, при обучении сети решению задачи диагностики отклонений в реакции на стресс нейронная сеть должна была определить наличие или отсутствие тринадцати различных патологий. Если одна сеть может выдавать только один ответ, то для решения задачи необходимо задействовать тринадцать сетей. Однако в этом нет необходимости. Поскольку каждый ответ, который должна выдавать сеть, имеет только два варианта, то можно использовать для его получения классификатор на два класса. Для такого классификатора необходимо два выходных сигнала. Тогда для решения задачи достаточно получать 26 выходных сигналов: первые два сигнала — для определения первой патологии, третий и четвертый —
При использовании таких составных оценок и интерпретаторов каждый из этих компонентов должен следить за тем, чтобы каждая частная оценка или интерпретатор получали на вход те данные, которые им необходимы.
Лекция 11.1. Исполнитель
Компонент исполнитель является служебным. Это означает, что он универсален и невидим для пользователя. В отличие от всех других компонентов исполнитель не выполняет ни одной явной функции в обучении нейронных сетей, а является вспомогательным для компонентов учитель и контрастер. Задача этого компонента — упростить работу компонентов учитель и контрастер. Этот компонент выполняет всего несколько запросов, преобразуя каждый из них в последовательность запросов к различным компонентам. В данной главе содержательно рассмотрены алгоритмы исполнения всех запросов исполнителя.
Как было описано в главе «Двойственные сети», исполнитель выполняет четыре вида запросов.
1. Тестирование решения примера.
2. Оценивание решения примера.
3. Оценивание решения примера с вычислением градиента.
4. Оценивание и тестирование решения примера.
Таблица 1. Параметры запроса для позадачной работы
Название параметра | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Перейти к следующему примеру | +/– | +/– | +/– | +/– |
Остановиться в конце обучающего множества | +/– | +/– | +/– | +/– |
Вычислять оценку | – | + | + | + |
Интерпретировать ответ | + | – | – | + |
Вычислять градиент | – | – | + | – |
Подготовка к контрастированию | – | – | +/– | – |
Все перечисленные запросы работают с текущей сетью и текущим примером задачника. Однако компоненту задачник необходимо указать, какой пример подлежит обработке. Кроме того, в главе «Оценка и интерпретатор ответа» введен класс оценок, вычисляемых по всему обучающему множеству. Такие оценки позволяют существенно улучшить обучаемость сети и ускорить ее обучение. Нет смысла возлагать перебор примеров на учителя, поскольку это снижает полезность компонента исполнитель. Таким образом, возникает еще четыре вида запросов.
Тестирование решения всех примеров обучающего множества.
Оценивание решения всех примеров обучающего множества.
Оценивание решения всех примеров обучающего множества с вычислением градиента.
Оценивание и тестирование решения всех примеров обучающего множества.
Как уже отмечалось в главе «Двойственные сети», каждую из приведенных четверок запросов можно объединить в один запрос с параметрами. В табл. 1 приведен полный список параметров для первой четверки запросов, а в табл. 2 — для второй.
Таблица 2. Параметры запроса для обучающего множества в целом
Название параметра | 5 | 6 | 7 | 8 |
---|---|---|---|---|
Вычислять оценку | – | + | + | + |
Интерпретировать ответ | + | – | – | + |
Вычислять градиент | – | – | + | – |
Подготовка к контрастированию | – | – | +/– | – |
Символ «+» означает, что в запросе, номер которого указан в первой строке колонки, возможность, задаваемая данным параметром, должна быть использована. Символ «–» — что связанная с данным параметром возможность не используется. Символы «+/–» означают, что запрос может, как использовать, так и не использовать данную возможность. Отметим, что подготовка к контрастированию может быть задействована, только если производится вычисление градиента, а вычисление градиента невозможно без вычисления оценки. Остальные параметры независимы.
Отбор примеров в обучающее множество, открытие сеанса работы с задачником должны выполняться учителем или контрастером. Исполнитель только организует перебор примеров в обучающем множестве.
При полной или частичной аппаратной реализации нейрокомпьютера компонент исполнитель эффективно реализуется аппаратно, по следующим причинам.
Исполнитель реализует исключительно связные функции по отношению к другим компонентам.
Исполняемые им запросы постоянны и не зависят от реализаций других компонентов нейрокомпьютера.
Этот компонент работает чаще, чем любой другой, и, как следствие, ускорение в работе исполнителя приводит к соизмеримому ускорению работы нейрокомпьютера.
Лекция 11.2, 12. Учитель
Этот компонент не является столь универсальным как задачник, оценка или нейронная сеть, поскольку существует ряд алгоритмов обучения жестко привязанных к архитектуре нейронной сети. Примерами таких алгоритмов могут служить обучение (формирование синаптической карты) сети Хопфилда [312], обучение сети Кохонена [ 31, 132] и ряд других аналогичных сетей. Однако в главе «Описание нейронных сетей» приводится способ формирования сетей, позволяющий обучать сети Хопфилда [312] и Кохонена [131, 132] методом обратного распространения ошибки. Описываемый в этой главе компонент учитель ориентирован в первую очередь на обучение двойственных сетей (сетей обратного распространения ошибки).
Что можно обучать методом двойственности
Как правило, метод двойственности (обратного распространения ошибки) используют для подстройки параметров нейронной сети. Однако, как было показано в главе «Описание нейронных сетей», сеть может вычислять не только градиент функции оценки по обучаемым параметрам сети, но и по входным сигналам сети. Используя градиент функции оценки по входным сигналам сети можно решать задачу, обратную по отношению к обучению нейронной сети.
Рассмотрим следующий пример. Пусть есть сеть, обученная предсказывать по текущему состоянию больного и набору применяемых лекарств состояние больного через некоторый промежуток времени. Поступил новый больной. Его параметры ввели сети и она выдала прогноз. Из прогноза следует ухудшение некоторых параметров состояния больного. Возьмем выданный сетью прогноз, заменим значения параметров, по которым наблюдается ухудшение, на желаемые значения. Полученный вектор ответов объявим правильным ответом. Имея правильный ответ и ответ, выданный сетью, вычислим градиент функции оценки по входным сигналам сети. В соответствии со значениями элементов градиента изменим значения входных сигналов сети так, чтобы оценка уменьшилась. Проделав эту процедуру несколько раз, получим вектор входных сигналов, порождающих правильный ответ. Далее врач должен определить, каким способом (какими лекарствами или процедурами) перевести больного в требуемое (полученное в ходе обучения входных сигналов) состояние. В большинстве случаев часть входных сигналов не подлежит изменению (например пол или возраст больного). В этом случае эти входные сигналы должны быть помечены как не обучаемые (см. использование маски обучаемости входных сигналов в главе «Описание нейронных сетей»).