Чтение онлайн

ЖАНРЫ

Удивительная астрономия
Шрифт:

Детальные исследования показали, что вещество в пылевых облаках не «свалено в кучу», а под действием магнитного поля Галактики собирается в своеобразные «волокна».

...

В известной фантастической повести К. Булычева «Путешествие Алисы» о приключениях школьницы из будущего Алисы Селезневой есть упоминание о некой живой туманности. По поводу существования этого таинственного космического объекта ходили споры. Некоторые ученые верили в то, что живая туманность есть, и пытались отыскать ее. Другие, в том числе папа Алисы, отказывались верить в подобное. И все же эту туманность удалось обнаружить и, поймав в особую сеть, спустить на ближайшую планету:

«Два корабля справились наконец с сетью, и через полчаса живая туманность, надежно сжатая двумя кораблями, лежала на траве неподалеку от нас… Туманность нас разочаровала. Она, наверное, очень эффектна в межзвездном пространстве, когда расстилается на миллионы километров, но здесь, на траве, она казалась чуть пульсирующим серым сгустком тумана».

Разумеется, на самом деле ничего подобного в Галактике не встречается. И все-таки кое-кто из астрономов

всерьез полагает, что живые туманности – это не совсем выдумка, но отчасти реальность. Настоящие живые туманности отличаются от «Алисиной» тем, что они не являются единым организмом. Живая туманность в повести Булычева представляла собой одно целое, как бы «сверхживотное». Реальные живые туманности лучше сравнивать с коралловыми рифами – это скопища микроскопических живых существ.

Темная туманность Конская голова

К такому выводу астрономы пришли не сразу. На протяжении многих лет ученые старательно собирали сведения о химическом составе темных пылевых туманностей, где удалось обнаружить большинство веществ, входящих в состав земных организмов. Но самым главным открытием стало то, что основной «строительный материал» туманностей – графит. Тот самый химически чистый углерод, из которого делают грифели карандашей. Но ведь углерод служит еще и главным «кирпичиком» жизни.

Астрономов крайне заинтересовало, почему космический графит настолько черен. Конечно, это само по себе довольно темное, грязновато-черное вещество, но все-таки космические туманности наполнял какой-то другой, особенный графит. И тогда стало понятно, что углеродные пылинки покрывает тончайший слой неизвестного вещества, и оно делает внеземной графит чернее земного.

И снова начались измерения, вычисления и прочие кропотливые исследования. Астрономам хотелось узнать, что за таинственная пленка обволакивает углеродные пылинки. В 1977 году странное вещество опознали; им оказалась целлюлоза, из которой состоят стенки живых клеток. И тогда английский астроном Фред Хойл (1915–2001) предположил, что темные туманности – это огромные колонии космических микробов.

К счастью, эти микробы давным-давно убиты звездным излучением, но когда-то они были вполне жизнеспособными и активными. По мнению Хойла, внутри молодых газопылевых туманностей складывается благоприятная среда для зарождения микробов. Сюда не проникает убийственный ультрафиолет звезд, здесь много питательных веществ. Бактерии, которые завелись в таком облаке, быстро размножаются и постепенно заполняют все пространство туманности.

Однако с течением времени туманность расширялась в пространстве, из-за чего становилась все тоньше и тоньше. Теперь она уже не могла защищать микробы от жестких звездных лучей. Лучи все глубже проникали в толщу туманности, сжигая несчастные бактерии, которые превращались в обугленные кусочки графита, покрытые целлюлозной оболочкой. Так что видимые нами сегодня темные туманности вполне могут оказаться скоплением мертвых микробов.

Пока еще гипотеза Хойла не получила подтверждения, для этого нужны совершенно новые приборы, способные как бы приблизить к нам темные туманности. Не выяснен и другой вопрос: не связано ли появление жизни на Земле с микробами в космических туманностях?

Хойл был убежден, что это вполне возможно. Сначала жизнь зародилась в космосе, в сгустках туманностей, а затем оттуда кометами была разнесена по другим планетарным системам. Где-то микробы прижились, как у нас на Земле, а где-то погибли, потому что попали в непригодные для существования условия.

Но это все-таки только гипотеза. Все известные нам факты о далеком прошлом Солнечной системы говорят в пользу того, что именно Земля оказалась колыбелью жизни, причем без всякой помощи извне. И тем не менее этими неразрешимыми задачками туманности преподали человечеству полезный урок. В природе нет ничего неинтересного. Даже скучный на вид межзвездный газ способен таить в себе великие загадки, которые имеют непосредственное отношение к нашей Земле и жизни на ней.

Родильный дом для звезд и планет

Раньше мы не раз говорили о том, что все наблюдаемые астрономами звезды и планеты родились из газопылевых облаков, существовавших в нашей Галактике в далеком прошлом. А что сегодня? Неужели в космосе прекратилось образование новых объектов? Оказывается, не прекратилось. Конечно, сегодня в Млечном Пути гораздо меньше пыли и газа, чем 10 миллиардов лет назад, поскольку основная масса газопылевого вещества уже «потрачена» на звезды и их планетные системы. И все-таки до сих пор в спиральных рукавах Галактики сохранились «родильные дома» – области активного звездообразования.

К таким областям отнесены гигантские молекулярные облака (ГМО) – туманности, расположенные преимущественно внутри галактических рукавов и сформировавшиеся за счет оседания газа на плоскость. Вблизи ГМО в изобилии встречаются массивные голубые и бело-голубые звезды с очень высокой температурой поверхности. Это молодые светила, возрастом немногим более одного миллиона лет, которые совсем недавно покинули «родильный дом» и не успели далеко от него улететь.

Своим тяготением молодые звезды заставляют газ в ГМО еще более сгущаться, отчего в облаках возникают самостоятельно сжимающиеся газовые комки. Но и без влияния новорожденных звезд вещество любого гигантского облака полностью перешло бы в звезды за какой-нибудь миллион лет. Этого не происходит, потому что возникновению газовых комков ощутимо препятствуют магнитное поле Галактики, вихревые потоки горячего водорода и многие другие помехи.

Чтобы газовый комок сумел преодолеть эту «полосу препятствий» и породить звезду, его масса должна достигать хотя бы 1 % от солнечной при диаметре в 5 миллионов раз больше солнечного. Достигший нужных размеров и веса комок начинает довольно быстро (по космическим меркам) уплотняться, засасывая в себя пыль и газ из окружающего пространства. В результате вокруг зародыша возникает плотное газопылевое скопление, называемое аккреционным диском .

Аккреционный диск – это «тарелка с манной кашей» для растущего малыша. Отсюда газопылевое вещество могучими потоками ниспадает на комок, постоянно подпитывая его.

Спустя полмиллиона лет внутри растущего комка образуется протозвезда – зародыш будущего светила. Протозвезда из-за малой массы не светится, но уже не может рассеяться как космическое облако. Она наращивает массу и постепенно разогревается изнутри. Охлаждению препятствует особая оболочка из мельчайших частиц – пылевой кокон , который помогает звезде хранить тепло. Едва температура протозвезды повысится до +2000 °C, как внутри объекта начинаются необратимые процессы превращения в настоящую звезду.

Пылевые коконы во множестве обнаружены в разных туманностях. Первый из них был открыт в 1967 году в Большой туманности Ориона. По размерам этот кокон в 1000 раз крупнее Солнца. Внутри него находится протозвезда с температурой излучения около +400 °C. Впоследствии в этой туманности удалось найти немало других типов газопылевых сгущений, например, так называемые горячие инфракрасные циррусы .

Дети не остаются всю свою жизнь в роддоме. Точно так же и звезды по мере взросления покидают туманности и занимают новое место в Галактике. Солнце, по всей видимости, тоже родилось в составе юных звездных ассоциаций спиральных рукавов, но затем, повзрослев, рассталось со своими ровесниками и поселилось особняком в секторе «взрослых» светил.

Наиболее старые звезды Галактики находятся в шаровых скоплениях , которые лежат за пределами галактического диска в области под названием «гало». Сейчас здесь почти нет газа и пыли, поскольку все вещество из гало осело на плоскость Галактики в ту далекую эпоху, когда Млечный Путь еще только приобретал дисковидную форму. Так что шаровые скопления звезд среди прочего населения вселенского «зверинца» являются прямо-таки ветхими стариками в возрасте от 10 миллиардов лет.

Наблюдать протозвезды гораздо сложнее, чем настоящие светила. И тем не менее астрономы сумели отыскать в туманностях немало признаков зарождения звезд. Например, скопление RCW38 ярко освещено двойной звездой IRS2, вокруг которой заметны многочисленные протозвезды. Это скопление является «родильным домом»; при этом яркая двойная звезда представляет собой только что «родившегося» и потому массивного и очень горячего «младенца». Соседствующие с IRS2 протозвезды пока не «родились», то есть их формирование еще далеко от завершения.

Иногда астроному гораздо проще наблюдать признаки скорого рождения звезды и по этим признакам угадывать ту «колыбель», где в настоящий момент находится протозвезда. Наиболее известным признаком звездообразования выступают особые уплотнения в туманностях под названием объектов Хербига – Аро (в честь двух современных астрономов: американца Джорджа Хербига и мексиканца Гильермо Аро).

Наличие таких объектов говорит о близком присутствии аккреционного диска. Он окружает протозвезды и молодые звезды в первые несколько сотен тысяч лет их существования. Газ внутри такого диска очень быстро обращается вокруг звезды и столь же быстро стекает на ее поверхность. Из-за этого в диске время от времени рождаются ударные волны, которые создают нечто вроде разогретых плазменных фонтанов. Такие фонтаны со сверхзвуковой скоростью «поливают» межзвездный газ, который в результате начинает светиться. Вот такие светящиеся участки туманностей, заполненные горячей плазмой, и называются объектами Хербига – Аро.

Аккреционный диск, «кормящий» протозвезду

Объект Хербига – Аро (под номером НН32) на фоне молодых звезд

Всего на сегодняшний день открыто свыше 400 таких объектов, хотя их общее число в Галактике может составлять более 150 тысяч. Чаще всего эти объекты не сильно удаляются от породившего их аккреционного диска, так что расстояние между протозвездой и объектом Хербига – Аро обычно составляет 1–2 световых года.

Планетные системы, в свою очередь, формируются из остатков аккреционного диска, окружающего протозвезду и юную звезду. Быстро раскрученный газ способен образовывать вокруг новорожденного светила маленькие сгустки. Эти сгустки движутся в одном направлении и лежат в одной плоскости – плоскости газопылевого диска. Их масса мала по сравнению со звездной, зато скорость обращения очень велика. Постепенно уплотняясь, такие сгустки превращаются в планеты.

Процессы формирования планет в Галактике не прекращаются. Ученые имеют возможность наблюдать за рождением планет вокруг некоторых звезд прямо сегодня. Протопланетные диски обнаружены вокруг Фомальгаута, AU Микроскопа, Денеболы, Эпсилона Эридана, беты Живописца и др.

Маленькое созвездие Живописца видно только на небе южного полушария Земли. Бета является вторым по блеску светилом этого созвездия. Будучи почти вдвое тяжелее Солнца, она относится к классу А и обладает в 9 раз большей светимостью. Звезда удалена от нас более чем на 63 световых года. Ее приблизительный возраст составляет 10–20 миллионов лет.

В середине 1980-х годов тщательные наблюдения за этой звездой с компьютерной обработкой фотографий помогли установить, что бета Живописца является источником слишком сильного теплового излучения, нетипичного для звезд ее класса. Астрономы предположили, что вокруг звезды имеется газопылевой диск, который нагревается под действием звездного излучения и таким образом создает дополнительный тепловой фон.

Позднейшие исследования показали, что бету Живописца окружают два газопылевых диска, находящихся под углом в 5° по отношению друг к другу. Поперечник каждого из дисков превосходит 100 астрономических единиц. Внутри дисков удалось обнаружить кольцевидные скопления плотного каменистого вещества. Возможно, перед нами зародыши планет или астероидные пояса.

Протопланетный диск вокруг звезды бета Живописца

Поделиться с друзьями: