Чтение онлайн

ЖАНРЫ

Шрифт:

Но… наука все время будет повторять и повторять это «но», не отдавая явного предпочтения ни одному «окончательному», «бесповоротному» мнению. Итак, к самому концу XIX в., когда сторонники электромагнитной волновой теории света праздновали, казалось бы, окончательную победу, их торжество смутили некоторые, на первый взгляд, незначительные сомнения, «легкие облака» на горизонте волновой физики.

Сомнения эти были вызваны изобретением фотографии, или способности света расщеплять молекулы солей серебра, а также фотоэффекта – способности света «вырывать» из металла особые неведомые

тогда частицы – электроны. А далее были сделаны и новые открытия, которые превратили «легкие облака» в грозовые тучи, смешавшие все, казалось бы, незыблемые представления о природе света.

Смертельный удар по электромагнитной волновой теории света нанесла в самом конце XIX в. так называемая «ультрафиолетовая катастрофа». Дело в том, что согласно этой теории любое тело должно постоянно излучать в пространство волновую энергию, а следовательно, терять ее и охлаждаться. Причем вплоть до абсолютного нуля. А так как излучаются все частоты, включая очень энергоемкие – ультрафиолетовые, то и катастрофа «глобального» охлаждения всех тел была названа «ультрафиолетовой».

< image l:href="#"/>

Но если этого в природе не происходит, то, следовательно, волновая электромагнитная природа света бессмысленна. Выход из «ультрафиолетового» тупика был найден немецким физиком Максом Планком (1858—1942). Он предположил, что энергия электромагнитного излучения выделяется не непрерывно, а порциями, называемыми квантами (вспомним старого «хорошо забытого» Гюйгенса!). И оказалось, что при больших частотах (т. е. хотя бы для того же ультрафиолетового диапазона) эти кванты настолько велики, и на их создание затрачивается такая большая энергия, что на излучение ее уже и не хватает. Вывод Планка был таков – при больших частотах энергия излучения практически равна нулю, и никакая «ультрафиолетовая катастрофа» нам не угрожает.

Квантовая гипотеза прекрасно объясняла и явление фотоэффекта и химического действия света, в том числе и фотосинтез, которому мы обязаны жизнью на Земле, и многое другое. Но оказалось, что эта гипотеза не отбросила волновую гипотезу, а прекрасно с ней сжилась. Полученный «симбиоз» двух гипотез объяснял уже все свойства электромагнитного излучения, в том числе и света.

А практически получилось следующее:

– при распространении свет ведет себя скорее как волна, а при возникновении и поглощении – скорее как частица;

– при больших частотах главную роль играют квантовые («корпускулярные») свойства света, а при малых – волновые.

Вот такой «двуликий Янус» получается! Время примирило соперников и сделало правыми и Ньютона, и Гюйгенса. И даже древнего Пифагора, который тоже, оказывается, был прав. Одним словом, история науки показывает, что все, кто работали, создавали теории, экспериментировали, спорили, ломали копья, кого возвеличивали и кого опровергали, «сбрасывали с пьедестала», все оказались правыми. Всем нашлось место в нашей памяти, в учебниках, в энциклопедиях и справочниках. Не нашлось и не найдется там места лишь тем, кто «жалел» себя и ничего не делал. Такова жизнь!

Как мы смотрим на мир?

Разговаривая о свете, мы просто обязаны знать, как видят глаза. Иначе мы, чего доброго, будем, как древние, думать, что из глаз исходят тонкие щупальца, ощупывающие все вокруг.

Примитивный глаз, так называемый сложный, или фасеточный, характерен для насекомых и ракообразных. Состоит такой глаз из множества отдельных «глазков» – фасеток, покрывающих выпуклый сложный глаз насекомого. Такие глаза хорошо видят широко вокруг, особенно движение, но нечетко. По сравнению с головой насекомого, например, мухи, глаза эти очень велики, они занимают большую часть «лица» мухи.

Простейшие животные, не имеющие специального органа зрения, если и «видят» свет, то просто ощущают его кожей. Также кожей ощущают свет и слепые. Скорее всего, они чувствуют тепло, приносимое светом.

Когда говорят об эволюции видов и учении Дарвина, вопрос о глазе животных встает в первую очередь. Как фасеточный глаз мог путем эволюции превратиться в принципиально

новый «прибор» – глаз высокоразвитых животных и человека? Рассмотрение устройства и принципа работы такого глаза показывает, что этого быть не могло.

Рис. 121. Преломление света в призме

Чтобы понять работу глаза, рассмотрим сперва, как свет проходит через стеклянную, да и вообще прозрачную призму (рис. 121). Допустим, какой-нибудь одноцветный пучок света DЕ падает на грань призмы АВ. При переходе из одной прозрачной среды (воздуха) в другую (стекло) луч преломляется, и угол , на который он отклонился, зависит от так называемого коэффициента преломления, в данном случае стекла. В стекле луч идет по направлению ЕF, а по выходу из него снова преломляется и идет по направлению FG. Если мы возьмем равнобедренную призму (рис. 122, а) и пошлем лучи света перпендикулярно грани АВ, то они по законам преломления света полностью отразятся от грани АС и выйдут наружу совсем так, как если бы вместо грани АС было зеркало. Если же мы поставим призму так, как изображено на рис. 122 б, то лучи света, отразившись от грани АС, поменяются местами – нижний луч 3 уже станет верхним, а верхний 1 – нижним. Эта последняя призма называется оборотной.

Рис. 122. Поворотная (а) и оборотная (б) призмы
Рис. 123. Преломляя лучи, линзы действуют как совокупности призм: а – выпуклые линзы; б – вогнутые линзы

Так можно перевернуть изображение «вверх ногами». Запомните это свойство оборотной призмы, оно нам еще пригодится. А теперь, узнав о свойствах призм, перейдем к линзам (это слово в переводе с немецкого означает «чечевица», которая очень похожа на выпуклую линзу). Они бывают выпуклыми, или собирающими (рис. 123, а), и вогнутыми, или рассеивающими (рис. 123, б). Рассматривая ход лучей в линзах, как бы состоящих из совокупности призм, получаем, что в собирающей линзе параллельные лучи «соберутся» в фокусе F, а в рассеивающей – «рассеются» так, как будто этот фокус F расположен по другую сторону линзы (мнимый фокус). Обратная величина фокусному расстоянию (от фокуса до центра линзы) называется оптической силой и выражается в диоптриях. Если фокусное расстояние наших очковых линз, например, 0,1 м, то их сила равна 1/0,1 = 10 диоптрий.

Рис. 124. Ход лучей в линзе

Если какой-нибудь предмет АВ (рис. 124) находится достаточно далеко от линзы, то, построив ход лучей от точек А и В, мы получим по другую сторону линзы перевернутое его изображение А1В1. При этом размеры изображения А1В1 во столько раз больше (или меньше) размеров предмета АВ, во сколько расстояние от линзы изображения больше (или меньше) расстояния от нее предмета. Иными словами, размеры пропорциональны расстояниям от линзы. На рисунке изображение А1В1 ближе к линзе, чем предмет АВ, потому оно и пропорционально уменьшено по сравнению с последним.

А теперь перейдем к человеческому глазу (рис. 125). Внешняя оболочка глазного яблока – склеротика S, передняя прозрачная часть которой С носит название роговой оболочки. Внутренняя сторона склеротики покрыта сосудистой оболочкой, состоящей из кровеносных сосудов. В передней части сосудистая оболочка переходит в радужную оболочку i, посередине которой находится круглое отверстие – зрачок р.

Рис. 125. Устройство глаза человека
Поделиться с друзьями: