Чтение онлайн

ЖАНРЫ

UNIX: взаимодействие процессов

Стивенс Уильям Ричард

Шрифт:

Мы видим, что размер файла равен 72 байтам что соответствует рис. 16.4, на котором изображена схема хранения данных.

Прочитав этот файл в BSD/OS или Digital Unix, мы получим те результаты, на которые и рассчитывали:

bsdi % read < data

read 76 bytes

short_arg = 1, long_arg = 2, vstring_arg = 'hello, world'

fopaque[] =99, 88, 77

vopaque<> = 33 44

fshort_arg[] = 9999, 8888, 7777, 6666

vlong<> = 123456 234567 345678

uarg (int) = 123

alpha % read < data

read 76 bytes

short_arg = 1, long_arg = 2, vstring_arg = 'hello, world'

fopaque[] = 99, 88, 77

vopaque<> = 33 44

fshort_arg[] = 9999, 8888, 7777, 6666

vlong<> = 123456 234567 345678

uarg (int) = 123

Рис. 16.4.

Формат потока XDR, записанный в листинге 16.13

Пример: вычисление размера буфера

В предыдущем примере мы выделяли буфер размера BUFFSIZE (определенного в файле unpiрс.h в листинге В.1), и этого было достаточно. К сожалению, не существует простого способа вычислить объем памяти, нужный XDR для кодирования конкретных данных. Вычислить размер структуры вызовом sizeof недостаточно, потому что каждое поле кодируется XDR по отдельности. Нам придется перебирать элементы структуры, прибавляя к конечному результату объем памяти, нужный XDR для кодирования очередного элемента. В листинге 16.15 приведен пример простой структуры с тремя полями.

Листинг 16.15. Спецификация XDR для простой структуры

//sunrpc/xdrl/examplе.х

1 const MAXC = 4;

2 struct example {

3 short a;

4 double b;

5 short c[MAXC];

6 };

Программа, текст которой приведен в листинге 16.16, вычисляет размер буфера, требуемого XDR для кодирования этой структуры. Он получается равным 28 байт.

Листинг 16.16. Программа, вычисляющая размер буфера XDR

//sunrpc/xdr1/example.c

1 #include "unpipc.h"

2 #include "example.h"

3 int

4 main(int argc, char **argv)

5 {

6 int size;

7 example foo;

8 size = RNDUP(sizeof(foo.a)) + RNDUP(sizeof(foo.b)) +

9 RNDUP(sizeof(foo.c[0])) * MAXC;

10 printf("size = %d\n", size);

11 exit(0);

12 }

8-9 Макрос RNDUP определен в файле <rpc/xdr.h>. Он округляет аргумент к ближайшему кратному BYTES_PER_XDR_UNIT (4). Для массива фиксированного размера вычисляется размер каждого элемента, который затем умножается на количество элементов.

Проблема возникает в случае использования типов данных переменной длины. Если мы объявим stringd<10>, максимальный размер будет RNDUP(sizeof( int)) (для

длины) плюс RNDUP(sizeof(char)*10) (для символов строки). Но мы не можем вычислить размер буфера, если максимальный размер не указан в объявлении переменной (например, float e<>). Лучше всего в этом случае выделять буфер с запасом, а потом проверять, не возвращают ли подпрограммы XDR ошибку (упражнение 16.5).

Пример: необязательные данные

Существуют три способа задания необязательных данных в файле XDR, примеры для всех приведены в листинге 16.17.

Листинг 16.17. Файл спецификации XDR, иллюстрирующий способы задания необязательных данных

//sunrpc/xdr1/opt1.x

1 union optlong switch (bool flag) {

2 case TRUE:

3 long val;

4 case FALSE:

5 void;

6 };

7 struct args {

8 optlong arg1; /* объединение с булевским дискриминантом */

9 long arg2<1>; /* массив переменной длины с одним элементом */

10 long *arg3; /* указатель */

11 };

Объявление объединения с булевским дискриминантом

1-8 Мы определяем объединение с ветвями FALSE и TRUE и структуру этого типа. Если флаг дискриминанта TRUE, за ним следует значение типа long; в противном случае за ним ничего не следует. После кодирования библиотекой XDR это объединение будет закодировано как:

■ 4 байта флага со значением 1 (TRUE) и 4 байта целочисленного значения либо

■ 4 байта флага со значением 0 (FALSE).

Объявление массива переменной длины

9 Если мы указываем массив переменной длины с одним возможным элементом, он будет передан как:

■ 4 байта со значением 1 и 4 байта значения либо

■ 4 байта со значением 0.

Объявление указателя XDR

10 Новый способ определения необязательных данных заключается в объявлении указателя. Он будет закодирован как:

■ 4 байта со значением 1 и 4 байта значения либо

■ 4 байта со значением 0

в зависимости от значения соответствующего указателя при кодировании данных. Если указатель ненулевой, используется первый вариант кодирования. Если указатель нулевой, получится второй вариант. Это удобный способ кодирования необязательных данных в случае, если в нашем коде имеется указатель на эти данные.

Важная деталь реализации, благодаря которой оба варианта дают одинаковый результат при кодировании, заключается в том, что значение TRUE равно 1, что совпадает с длиной массива переменной длины, когда в нем есть один элемент.

В листинге 16.18 приведен текст заголовочного файла, созданного программой rpcgen для данного файла спецификации.

Листинг 16.18. Заголовочный файл, получившийся в результате обработки листинга 16.17

//sunrpc/xdr1/opt1.h

7 struct optlong {

8 bool_t flag;

9 union {

10 long val;

11 } optlong_u;

12 };

13 typedef struct optlong optlong;

Поделиться с друзьями: