Чтение онлайн

ЖАНРЫ

В мире занимательных фактов
Шрифт:

НАУКА И ТЕХНИКАДЛЯ ЖИЗНИ

Над тремя загадками природы, каждая из которых открывает окно в новый мир, работают сейчас ученые земли.

Первая из них — космос, вторая — строение атомного ядра, третья — загадка сущности жизни.

Еще не так давно люди знали о трех элементарных частицах: протоне, электроне и нейтроне. В настоящее время открыто уже 16 элементарных частиц и примерно столько же античастиц. Это уже известные нам электрон, протон и нейтрон, а также позитрон, мезон, гиперон и другие.

Для дальнейшего подразделения к названиям основных частиц прибавляются

греческие буквы: пи, кси, сигма, лямбда. В некоторых названиях указывается и знак электрического заряда частицы, например, «нейтральный лямбда-гиперон, или «пи-минус мезон».

Если в число элементарных частиц включать еще и очень «короткоживущие», то общее число известных в наше время частиц достигнет 40. Этим доказывается научное положение о неисчерпаемости атома.

В прошлом между научным открытием и его практическим применением проходили десятки и даже сотни лет. Так, со времени открытия электрического тока до его первого использования в практике человека прошло почти полстолетия. Насколько быстрыми, поистине семимильными шагами двигается современная наука, видно из следующего факта: с момента открытия деления ядер урана до постройки первого ядерного реактора прошло немногим более трех лет.

Чтобы безошибочно предсказать погоду на будущее, надо знать ее сегодняшнее состояние на огромных территориях земли. Метеорологи, по существу, никогда не располагали достаточными для этого данными. Предмет изучения метеорологической науки — вся планета с окружающим ее пространством. Значит, и методы исследования должны соответствовать глобальному характеру самой атмосферы. Но как это сделать? Ответ дал успешный запуск первого советского искусственного спутника Земли. Вслед за ним на орбиты вышли космические научные лаборатории, запущенные в нашей стране и США.

Впервые в истории ученые получают возможность наблюдать за метеорологическими процессами в мировом масштабе. Прежде всего это относится к изучению облаков. До сих пор метеорологи смотрели на них снизу. Теперь с помощью фотокамер они могут наблюдать их сверху, из космоса. А как известно, характер и распределение облачности многое говорят метеорологам о движении воздушных масс, образовании циклонов, антициклонов, штормов. В зарубежной печати сообщалось, что по фотоснимкам облаков, переданным со спутника, удалось обнаружить сильный ураган в Тихом океане за два дня до того, как синоптики «нашли» его по данным наземных наблюдений.

Не меньшее практическое значение имеют исследования лучистой энергии, проводимые со спутников. По температуре облаков приблизительно вычисляется их высота, а это ценная информация для экипажей больших пассажирских самолетов, отправляющихся в ночной рейс.

Но и это не все. В результате поглощения солнечной радиации земной поверхностью на ней возникают так называемые «горячие» пятна. Наблюдения за ними из космоса помогут заблаговременно определять районы, в которых ожидаются грозы и другие разрушительные стихийные явления. Или представьте себе спутник, снабженный радарной установкой. Он будет регистрировать районы с осадками, их географические и «вертикальные» границы и даже различать, идет дождь, снег или град…

Разрабатываются проекты создания мировой службы погоды. В печати уже сообщалось о переговорах советских и американских ученых, во время которых была достигнута договоренность о совместном использовании спутников Земли для метеорологических исследований.

Благодаря спутникам метеорологическая служба будет ежедневно располагать подробными сведениями о погоде на всем земном шаре.

Превращение одного грамма легкого, неустойчивого дейтерия в более устойчивый гелий выделяет в 10

миллионов раз больше энергии, чем сгорание грамма угля. А энергия для человека — это все: свет, тепло, питание, изобилие в конечном счете. Понятно поэтому стремление ученых овладеть управляемой термоядерной реакцией, заставить ее работать на человека во всех отраслях народного хозяйства.

В отделе сверхвысоких ускорений конструкторского бюро Мосгорсовнархоза создана ультрацентрифуга, ротор которой делает 65 тысяч оборотов в минуту. Копейка, в обычных условиях весящая один грамм, в скоростной центрифуге становится в 300 тысяч раз тяжелее. За работой ультрацентрифуги следят электронные приборы. Новая машина нужна физикам, химикам, медикам. Она помогает проникать в тайны строения материи, создавать новые пластические массы, исследовать причины тяжелых заболеваний.

Управление плазмой — веществом, нагретым до температуры в несколько миллионов градусов, сделает человека еще более могущественным. Уже сейчас ученые— создатели межпланетных космических кораблей разрабатывают проекты плазменных ракетных двигателей. С их помощью можно будет завоевать околосолнечное пространство и реально говорить о полетах к звездным мирам Овладение плазмой позволит человечеству получать огромные количества энергии и расходовать их по усмотрению на свои нужды.

Более десяти лет ведут ученые исследования плазмы. Были созданы мощные термоядерные установки, в которых физики магнитным полем пытались удержать плазму— этот хаос ионизированных частиц — ионов и электронов. Плазма как бы «раздвигала» силовые линии магнитных полей и «выбрасывалась» за стенки установок, где сейчас же и остывала. При этом раскрыть характер происходивших в плазме явлений не всегда удавалось. Среди физиков, которые работали в лабораториях плазменных исследований, родился термин «неустойчивость плазмы».

И вот эта неустойчивость побеждена! В марте — апреле 1963 года в отделе плазменных исследований Института атомной энергии имени И. В. Курчатова группа советских ученых — М. С. Иоффе, Ю. Т. Байбородов, Р. И. Соболев, В. М. Петров — на плазменной установке ПР-5 получила устойчивую плазму, температура которой приблизилась к 40000 000 градусов.

Установка ПР-5—своеобразная «магнитная бутылка», в которую заключена плазма. 8 магнитных катушек создают поле вдоль оси цилиндра, а линейные проводники— магнитное поле, возрастающее по радиусу. Сложение двух полей и делает стенки «магнитной бутылки» чрезвычайно прочными.

В марте и апреле плазма жила в установке сотые доли секунды, но уже ясно, что можно продлить ее существование до десятых долей секунды. А это очень Много. Достаточно сказать, что в будущем термоядерном реакторе, который станет служить людям для получения энергии, плазма с температурой более 50 миллионов градусов будет загораться на несколько секунд.

Итак, одна из трех трудностей преодолена, а именно — высокие температуры уже получены. Следующие этапы — повышение плотности плазмы в тысячи и десятки тысяч раз и дальнейшее продление ее жизни. За рубежом сообщение об экспериментах с плазмой в марте-апреле 1963 года определили как «сенсацию номер 1 в физике».

«Кибернетическими помощниками человека» заслуженно называют электронные вычислительные машины. В наш век грандиозной технической революции буквально во всех отраслях техники требуются многочисленные и всесторонние расчеты высокой точности.

С помощью вычислительных машин, например, после запуска космической ракеты сразу же, в течение примерно первого часа, уточняется ее траектория. А если бы эти расчеты велись «вручную», то для того, чтобы рассчитать траекторию, потребовалось бы около года.

Поделиться с друзьями: