Чтение онлайн

ЖАНРЫ

В просторы космоса, в глубины атома [Пособие для учащихся]
Шрифт:

Наконец, умение уважать фазу подарило нам огромный класс измерительных приборов — интерферометров (рис. 3), к числу которых относится и наш межконтинентальный радиотелескоп. Чтобы легче разобраться в его возможностях и проблемах, бросим прощальный взгляд на затянутый туманом пруд, вспомним свои интерферометрические опыты и сделаем два важных примечания: чем точнее измеряется разность фаз, тем точнее можно определить направление на излучатель волн; чем больше база интерферометра (расстояние между точками, в которых измеряется фаза), тем больше сдвиг (набег) фаз и опять-таки тем точнее можно определить направление на излучатель.

Эти примечания помогают понять, какими способами можно бороться за самую важную характеристику

радиотелескопа-интерферометра — его угловую разрешающую способность, угловое разрешение, т. е. способность с высокой точностью различать источники излучений и их детали.

Лет тридцать назад, еще на заре радиоастрономии, делались первые попытки объединить несколько радиотелескопов в единую систему, но базу больше сотни километров сделать не удавалось. Многие препятствия были связаны с тем, что радиоизлучения, которые принимают антенны телескопов, имеют очень высокую частоту, а значит, время между соседними «гребнями» очень мало, мал период колебаний. Для сантиметровых волн, на которых по ряду причин удобней всего производить наблюдения, один период, т. е. один рабочий цикл интерферометра, как раз и попадает в интервал 3·10– 10 — 3·10– 11 с. В этом интервале находится цифра, с которой мы начали наш рассказ. И совсем уже мал сдвиг фаз — разница во времени, когда к антеннам интерферометра приходит гребень волны: чтобы измерить этот сдвиг фаз, все агрегаты комплекса, все радиотелескопы должны начинать отсчет фазы по выстрелу единого стартового пистолета, отбивающего время с точностью 10– 12 % (ошибка на 1 с за полмиллиона лет).

Легко сказать «…по единому выстрелу… с точностью до 10– 12 %», но как это сделать? Как это сделать, если между телескопами тысячи километров?

Для начала перечислим три способа, которые позволяют получить базу от нескольких километров до нескольких десятков километров. Высокочастотные сигналы с каждой из антенн можно передать на общий электронный блок, измеряющий разность фаз, по высокочастотному кабелю (рис. 5 на третьем листе цветной вклейки).

Можно сделать то же самое, предварительно понизив частоту обоих сигналов в индивидуальных смесителях, (рис. 6), но с использованием общего гетеродина. Наконец можно связать антенны с единым измерительным комплексом с помощью каналов радиосвязи (рис. 7). Во всех этих случаях в разных участках системы возникают дополнительные сдвиги фаз, они суммируются, что как раз и препятствует увеличению базы.

Интересный метод создания больших интерферометров предложили в 1963 г. советские радиофизики. Сущность метода состоит в том, что принимаемый сигнал прямо на месте преобразуют и записывают на магнитную пленку вместе с сигналами синхронизации, сверенными по эталонным атомным часам (рис. 8).

Таким образом получают как бы единую запись сигналов от двух или нескольких антенн — все эти сигналы привязаны к единой точке отсчета, к атомным часам, для которых как раз и характерна необходимая точность отсчета времени — что-то около 10– 12 %. Потом все пленки с сигналами, привязанными к атомному времени, не спеша собирают и обрабатывают на вычислительной машине, которая учитывает все, вплоть до таких «мелочей», как вращение Земли и связанное с этим непрерывное перемещение наблюдателей по отношению к фронту волны. На основе этого метода уже не раз создавались межконтинентальные интерферометры (рис. 4), было сделано немало интересных открытий.

О некоторых работах, в которых участвовали наши радиоастрономы, рассказывает руководитель этих работ с советской стороны, руководитель лаборатории Института космических исследований АН СССР доктор физико-математических наук Леонид Иванович Матвеенко:

— В 1976 г. с участием советских исследователей было проведено семь циклов наблюдений

на межконтинентальных радиоинтерферометрах. Это уже традиционные, плановые работы — они велись и раньше, будут проводиться в будущем. Первая работа 1976 г. (она длилась непрерывно более суток) прошла в феврале. В этот раз в интерферометр входили два радиотелескопа: в Хайстеке (район Бостона, США) и в Симеизе, в Крыму. Такие же циклы наблюдений были проведены в апреле и мае, но здесь уже работали радиотелескопы, расположенные в четырех точках планеты: в Тидбинбилле (Австралия, район Сиднея), в Мэриленд-Пойнте (район Вашингтона), в Биг-Пайн (вблизи Пасадены, США) и опять же в Симеизе. И наконец, пять циклов наблюдения по нескольку суток каждый (в июне, ноябре и декабре) с участием телескопов вблизи Бонна, в Хайстеке и Симеизе. Сезон 1977 г. в феврале открыл интерферометр Бонн — Симеиз — Онсала (Швеция).

Режим наблюдений, их программа очень насыщены и требуют исключительной четкости от всех участников работ. Обычно наблюдения одного объекта продолжаются 20 мин, затем пятиминутный перерыв на перестройку телескопа и снова двадцатиминутный сеанс. Сигнал, как правило, очень слаб, и его приходится долго «накапливать»; обычно период накапливания, этот квант измерений, составляет 300–400 с. Конкретные задачи наблюдений многообразны; об этом косвенно можно судить по числу исследовательских организаций — только в 1976 г. в наших работах участвовали Австрийская астрофизическая обсерватория, Институт Макса Планка (ФРГ), Массачусетский и Калифорнийский технологические институты, Смитсонианская, Хайстекская, Морская исследовательская и Национальная радиоастрономическая обсерватории, НАСА, Йельский университет (США), Крымская астрофизическая обсерватория и Институт космических исследований АН СССР. Все циклы наблюдений прошли удачно, «холостых выстрелов» не было. Это особенно радостно, потому что был впервые совершен трудный переход на очень короткую волну—1,35 см, что, в частности, позволило поднять разрешение интерферометра с 0,1 угловой миллисекунды до 0,05 миллисекунды. Оптический прибор с таким разрешением позволил бы из Москвы увидеть горошину во Владивостоке или увидеть с Земли яблоко на Луне.

Главные наши объекты — это природные мазеры, ядра галактик и совершенно загадочные до недавнего времени звездные образования — квазары.

В природных мазерах происходят в принципе те же процессы, что и в наших земных мазерах и лазерах; мощные источники энергии, скажем, излучения, идущие из области, где происходит рождение звезды, осуществляют «накачку» молекул окружающего газа — водяного пара или гидроксила; они-то и дают когерентное радиоизлучение — довольно острый и монохроматичный луч. До появления больших радиоинтерферометров это излучение приписывали большим областям пространства. Теперь же в этих областях удалось обнаружить очень компактные излучающие точки размером в десятые доли угловой миллисекунды.

Квазары долгое время представлялись этакими гигантскими полыхающими шарами с угловыми размерами в десятки и сотни миллисекунд (рис. 9). Напомним, что размеры, указанные в угловых единицах, — это есть тот телесный угол, в котором объект виден с Земли; так, например, размер Луны — 8 угловых градусов, Марса — 0,2 градуса. Чтобы перейти от угловых размеров к линейным, нужно знать расстояние до объекта. А оно не всегда известно достаточно точно, и астрономы характеризуют объект величиной, которую знают наверняка, — его угловым размером.

Но вернемся к квазарам.

У некоторых квазаров стали обнаруживаться детали, такие, например, как огромный (угловые размеры — около 20'') выброс материи («хвост») у квазара ЗС 273. Затем межконтинентальные интерферометры позволили увидеть достаточно мелкие детали квазаров (рис. 9—11).

Кроме того, наблюдая квазар с перерывом — иногда это несколько месяцев, иногда несколько недель, — часто обнаруживали, что его детали смещаются, разлетаются. С учетом примерного расстояния до квазара подсчитали скорость разлета, в ряде случаев она оказалась значительно больше скорости света. Есть разные объяснения этим сверхсветовым перемещениям. Какое из них окажется верным, покажут детальные исследования квазаров. Они входят в наши планы…

С помощью глобальных радиоинтерферометров уже сделано немало удивительных открытий касательно строения квазаров. Это даже представить себе трудно — исследуются детали квазаров, объектов, которые находятся на расстояниях в миллиарды световых лет, на краю видимой Вселенной! А обнаружение сверхсветовых движений в квазарах в какой-то момент даже вызвало сильное волнение в некоторых кругах, близких к астрономии. Как-никак речь шла о покушении на устои науки, что, конечно, всегда волнует — а вдруг?!

Поделиться с друзьями: