Вчера, сегодня, завтра
Шрифт:
В это мгновение в фотоэлементе под действием светового луча возникнет слабенький электрический ток. Усиленный мощными радиоусилителями, этот ток должен подействовать на магниты самозаписывающего прибора хронографа. Магниты притянут якорек, якорек щелкнет, а прикрепленное к нему перышко поставит на телеграфной ленте зубчик.
Наступал решительный момент. Сириус приближался к меридиану обсерватории. Павлов следил за медленным перемещением звезды в поле зрения инструмента.
Сейчас звезда пройдет через меридиан. Остаются считанные секунды, доли секунды, и тут громко щелкнули магниты хронографа. Перышко дрогнуло и поставило на ленте отчетливый
Правда, Сириус очень ярок. Заметить такую звезду еще не заслуга, но, как говорится, лиха беда — начало.
Ученый продолжал совершенствовать свое изобретение, и два года спустя его искусственный глаз по чувствительности сравнялся с человеческим, но по точности значительно превзошел его.
В течение тяжелых лет блокады Ленинграда Павлов продолжал улучшать свой прибор. В 1946 году было опубликовано подробное описание его изобретения.
Электрический глаз профессора Павлова имеет вид круглой коробки, величиной с литровую банку. Он привинчен к окуляру пассажного инструмента и составляет с ним одно целое.
На другом конце оси инструмента укреплена труба-искатель. С ее помощью астроном наводит телескоп на нужную ему часовую звезду, а затем включает электрический глаз. С этого момента астроном оказывается в положении телеграфиста, который собирается принять телеграмму, только его корреспондентом будет не другой телеграфист, а звезда.
Нити, служившие в пассажном инструменте для точных отсчетов, сняты; их заменяет круглая пластинка с узкими вертикальными щелями.
В тот момент, когда звезда проходит через меридиан инструмента, луч ее света проскальзывает в щель и попадает на фотоэлемент. В фотоэлементе возникает электрический ток.
Сигнал звезды заставляет вздрогнуть перышко самозаписывающего прибора, и оно ставит на бумажной ленте зубчик.
Второе перышко самозаписывающего прибора, соединенное с часами, отмечает зубчиками секунды. Астроном берет ленту с записью сигналов звезды и часов, спокойно, не торопясь изучает и измеряет ее.
Электрический глаз никогда не спешит, не волнуется, не устает; он не капризен, как человеческий глаз, и не допускает его ошибок.
Правда, хотя чужих ошибок прибор профессора Павлова не повторяет, он не свободен от своих собственных; и, чтобы проверять своего электрического заместителя, ученый придумал контролера. Этот контролер имеет вид фонарика. В нем светится маленькая тусклая неоновая лампочка. Она соединена прямым проводом с самозаписывающим прибором.
Когда нужно проверить работу электроглаза, профессор подносит фонарик к объективу пассажного инструмента и нажимает кнопку. Лампочка вспыхивает, электрический глаз улавливает вспышку, как луч звезды. В самозаписывающем приборе вздрагивают перышки: одно — от сигнала электрического глаза, другое — от сигнала, поступившего по прямому проводу от фонарика.
Два сигнала — два зубчика. Ученый берет ленту и смотрит, насколько запаздывает сигнал звезды, то есть на сколько ошибается его электрический заместитель. Эту поправку астроном учитывает при вычислении точного времени.
Самовидящий и самопишущий прибор профессора Павлова избавил астрономов от многих ошибок. Погрешности при измерениях уменьшились во много раз.
Советские астрономы выиграли битву за точность. Благодаря этому изобретению советские ученые могут лучше обслуживать сигналами точного времени всех своих многочисленных и разнообразных заказчиков.
Глава
девятая. Потребители точного времениТысячная доля секунды
Секунда — величина маленькая, но все же вполне ощутимая. За одну секунду можно сказать не спеша два недлинных слова.
Точность же современного астрономического определения времени достигла величины нескольких тысячных долей секунды.
Одна тысячная секунды! Эту меру трудно себе представить— уж очень она мала. Самое быстрое движение, на какое способен человек, это миг — мгновение ока, но, чтобы мигнуть, все-таки требуется ни мало, ни много, а четыреста тысячных долей секунды. Только чтобы закрыть глаза, и то надо семьдесят тысячных долей секунды.
Уколов палец иголкой, человек почувствует боль не сразу; чтобы ощутить боль от укола пальца, приходится ждать сорок тысячных долей секунды.
Даже комар — одно из самых быстрокрылых насекомых — и то за одну тысячную долю секунды не успевает махнуть крылышками. За этот срок он может только либо поднять, либо опустить крылышки.
Современный скоростной самолет с реактивным мотором, обгоняющий в полете звук, за одну тысячную долю секунды пролетит всего-навсего… около семидесяти сантиметров.
Так мала одна тысячная.
Астрономы добились поразительной точности; но можно ли этим гордиться? Кому нужна такая скрупулезная точность, кому от нее польза? В повседневной жизни мы прекрасно обходимся без нее. Если наши часы ошибаются на минуту в сутки, то это считается хорошо. Даже в железнодорожных расписаниях никогда не указывают секунд, — вполне достаточно минут.
Главным и очень требовательным заказчиком точности являются не моряки и не летчики, не топографы, которые с помощью сигналов точного времени определяют долготу, а разведчики подземных богатств — геологи.
В русских сказках наряду с ковром-самолетом и разрыв-травой существует также волшебный цветок папоротника. Он якобы вспыхивает голубым огоньком над тем местом, где зарыт какой-либо клад. Кто владеет таким цветком, — говорится в сказках, — тот может найти любое богатство, зарытое в земле.
Сейчас советские ученые изобрели изумительно чуткие приборы. Далеко до них сказочному цветку папоротника.
Угадывать скрытые изгибы земных пластов, определять плотность пород, залегающих на глубине двух — трех километров, и даже определять количество скрытых природных богатств — видеть в глубь земли — все это позволяют делать волшебные приборы, созданные отечественной наукой.
Сила тяжести на Земле не везде одинакова. Если где-либо в верхних слоях земной коры находится масса большей плотности, чем окружающие ее породы, например крупная залежь железной руды, то сила тяжести над этой залежью будет больше, чем в стороне от нее.
Если в земле находится пласт легких пород вроде мела, гипса или нефтяное месторождение, то сила тяжести над таким местом окажется меньше нормальной.
Измеряя силу тяжести в различных точках земной поверхности, геолог разведывает плотность пород, залегающих под почвой. Связав ее с другими геологическими данными — возрастом горных пород, характером изгибов пластов, — он решает, какие полезные ископаемые можно предполагать в данном месте.