Чтение онлайн

ЖАНРЫ

Великие химики. Том 1
Шрифт:

— Если мы расплавляем смесь аморфного фосфата кальция, и фторида кальция, образуется фторапатит, — сказал Девилль. — Если вместо фторида к фосфату добавить хлорид кальция, получается хлорапатит. Мы получили и другие фосфатные минералы, которые очень редко встречаются в природе.

— Вот это фосфат магния, а это фосфат железа, — сказал Карон, подавая два блюда с мелкими блестящими образцами полученных минералов.

— Удивительно! — воскликнул Вёлер. — Ваши высокотемпературные печи дают вам поистине неограниченные возможности для синтеза минералов. А что за синтез вы проводите теперь?

— В настоящее время мы несколько отошли от проблемы получения минералов, — сказал Девилль. — Успехи в производстве алюминия заставили нас искать пути для получения других металлов в чистом виде. Вы знаете, что еще в 1829 году Бусси получил металлический магний, применив ваш метод восстановления хлорида магния калием. Мы заменили калий натрием, поскольку с натрием

реакция протекает более спокойно, и теперь предприятия производят значительные количества этого легкого металла.

— Мы пытаемся усовершенствовать метод, — вмешался Карон. — Присутствие фторида кальция благоприятствует реакции, так как реакционная смесь плавится при более низкой температуре.

— Полагаю, что вы уже занимались изучением свойств магния? — спросил Вёлер. — Ведь мы до сих пор почти ничего не знаем о нем.

— Отчасти, — ответил Девилль. — Самое интересное то, что и магний, подобно калию и натрию, горит на воздухе. Впрочем, вы можете в этом сами убедиться.

Девилль взял железной ложкой небольшой кусочек сероватого металла и внес в открытую печь. Магний воспламенился, и ослепительно белый свет залил всю лабораторию. Вёлер прикрыл глаза рукой.

— Будто в лаборатории вспыхнуло солнце!

— Да, действительно, свет очень сильный, — сказал Девилль. — Многие свойства элемента все еще не установлены: ведь он не получен в абсолютно чистом виде. Для этого требуются новые исследования.

— Как раз об этом думал и я, — сказал Вёлер. — Возьмите, например, такой элемент, как бор. Сколько лет прошло с того времени, когда Гей-Люссак и Тенар получили его впервые. Мне кажется, что в условиях, в которых им приходилось работать, бор получался загрязненным и многие его свойства все еще точно не определены. Теперь, при наличии дешевого натрия, пришло, наконец, время вернуться к этим исследованиям и путем восстановления окиси бора получить более чистый бор.

— Прекрасная идея. Если хотите, мы можем провести эту работу совместно.

Предложение о восстановлении окиси бора натрием оказалось очень плодотворным: Вёлер и Девилль получили чистый аморфный бор в виде тонкого коричневого порошка. Они установили многие не известные до тех пор свойства этого элемента.

Особое внимание они обратили на способность бора гореть в атмосфере чистого азота. Полученный при этом процессе продукт представлял собой нитрид бора. Кроме опытов по восстановлению с помощью натрия, они сделали попытку провести восстановление алюминием, однако смесь окиси бора и порошкообразного алюминия оказалась инертной. Смесь нагрели настолько, что окись бора расплавилась и содержимое тигля превратилось в густую массу, но тем не менее реакция не шла. Температуру продолжали повышать дальше, и вдруг смесь в тигле стала потрескивать, на поверхности появились искорки, а стенки тигля стали раскаляться от выделившегося тепла. Температура повысилась еще больше, и непрореагировавший порошок алюминия расплавился. Немного спустя реакция прекратилась и раскаленный докрасна тигель стал медленно темнеть. Девилль высыпал его содержимое на фарфоровую плитку. Вёлер удалил белый порошок окиси алюминия, и открылась поверхность уже остывшего слитка алюминия. Коричневого порошка бора в тигле не было.

— Невозможно, чтобы бор не выделился, — сказал Девилль, продолжая рассматривать белый порошок.

— Если образовалась окись алюминия, должен получиться и бор, — заметил Вёлер.

— Может быть, бор соединился с избыточным алюминием?

— Ответ нам даст анализ. Надо растворить алюминий и проанализировать образовавшийся раствор.

Вёлер опустил кусочек алюминия в стакан с соляной кислотой. Когда реакция закончилась, на дне стакана собралось несколько черных блестящих кристалликов, не растворявшихся в кислоте. Вскоре ученые убедились, что они получили новую аллотропическую форму бора — кристаллический бор [451] . Эти маленькие блестящие кристаллики соперничали по твердости и блеску с самым твердым минералом — алмазом.

451

Кристаллическое состояние — обычное состояние бора; по твердости он занимает второе место после алмаза; аморфный бор образуется при определенных условиях. — Прим. ред.

Сотрудничество ученых привело «еще одному значительному открытию. Им удалось получить в чистом виде и элемент титан [452] . Вёлер знал по своим прежним исследованиям, что титан обладает весьма значительной реакционной способностью. Он очень легко связывается с азотом, образуя нитрид, поэтому все опыты по его получению он проводил в атмосфере водорода. Восстановление расплавленного фтортитаната калия параминатрия привело «получению чистого металла. Прежде пытались получить его и Берцелиус, и Уолластон, и Вёлер,

но вместо металла образовывался нитрид, ошибочно принимаемый ими за металл. Чистый титан был очень похож на железо. Как и железо, он растворялся в соляной кислоте, образуя раствор хлорида титана.

452

Электролитически чистый титан впервые получен в 1895 г. А. Муассаном, а затем в 1910 г. Хёнтером. Участие Девилля в получении чистого титана в трудах историков химии не зарегистрировано. См.: Фигуровский Н. А., ук. соч., с. 127–128; Меншуткин Б. Н. Курс общей химии. — Л.: Госхимтехиздат, 1933, с. 413; Бескин А. Л. Титан. — В кн.: Крицман В. А., ук. соч., Ч. II, с. 235–243.

Плодотворная деятельность Девилля в области металлургии принесла ему славу непревзойденного специалиста. Во время одного из регулярных воскресных собраний в его лаборатории среди посетителей появился высокий, статный незнакомец. Он с интересом рассматривал печи, тигли, изготовленные из графита, магнезита и окиси кальция. Когда посетители разошлись и лаборатория опустела, он подошел к Девиллю и сказал:

— Я русский, и к вам по поручению государя.

— Чем обязан этой чести?

— В царской казне хранится много отходов платины, оставшейся после чеканки монет. Кроме того, там хранятся руды, богатые платиной. Существует мнение, что извлечение платины из этих материалов известными методами невозможно [453] . Я послан к вам с просьбой о содействии.

453

В начале 20-х годов XIX в. на Урале были открыты месторождения платиновой руды. 1825 г. считается годом начала промышленной добычи платины. Русские ученые и инженеры с успехом исследовали платину и искали способы ее практического использования. Уральский инженер A. Н. Архипов (1785–1840) первым изготовил изделия из платины. Член-корреспондент Петербургской Академии наук П. Г. Соболевский (1782–1841) со своими сотрудниками нашел оригинальный способ химико-металлургической обработки платины в Соединенной лаборатории Горного кадетского корпуса (ныне Ленинградского горного института им. Г. В. Плеханова). Кроме платины Соболевский, по мнению академика B. И. Вернадского, открыл осмистый иридий. Наряду с изучением платины в России (которое привело к открытию К. К. Клаусом нового элемента — рутения) открытие Соболевского вызвало большой интерес за границей, где платину изучали Дэви, Берцелиус, Уолластон, Гумбольдт и др. Возможность обработки платины по способу Соболевского привела й решению русского правительства приступить к чеканке платиновых монет, которая продолжалась с 1828 по 1844 г. После применения Сент-Клер Девиллем для плавления платины кислородно-водородного пламени в 60-х годах XIX в. изготовление платиновых изделий по методу Соболевского было прекращено (Плоткин С. Я. Петр Григорьевич Соболевский. — М.: Наука, 1966; Волков В. А. и др., ук. соч., с. 468).

— Единственное, что мы можем сделать, — оказал Девилль, — это изучить возможность извлечения платины из ваших материалов здесь, в нашей лаборатории. Этим могу заняться я сам, а также помощник Дебре.

Несколько месяцев спустя в лабораторию Девилля доставили ящики, присланные из России. В них было пятьдесят шесть килограммов платиносодержащих материалов. Девилль и Дебре немедленно приступили к работе. Около четырех месяцев непрерывно проводились процессы, а два ученых работали посменно — один днем, другой ночью.

Когда русский посол в Париже прибыл к ним за полученным металлом, Девилль передал ему 42 кг чистой платины, отлитой в слитки, и один слиток иридия весом 1,8 кг. Несмотря на большое количество обработанных материалов и сложные операции, было потеряно только 120 г благородного металла. Эта работа еще раз подтвердила репутацию Девилля как одного из самых выдающихся специалистов по платиновым металлам.

В последующие годы продолжились опыты по получению металлов в чистом виде. Так, при восстановлении окислов хрома и марганца был применен уголь, полученный из сахара, а кобальт и никель удалось получить термическим разложением их оксалатов.

В высокотемпературных печах удалось провести разложение многих веществ, которые до тех нор считались чрезвычайно стойкими. Под действием высокой температуры происходит распад молекул на более простые частицы. Этот процесс, названный термической диссоциацией, имел чрезвычайно большое значение при определении молекулярных весов газообразных веществ. Метод определения молекулярных весов веществ по Дюма находил ограниченное применение из-за невысокой термостойкости стекла. Чтобы расширить возможности этого метода, Девилль применил фарфоровые сосуды, а нагревание проводил парами кипящих серы, ртути, кадмия или цинка. Таким образом, ему удалось провести измерения при 1000°, а в некоторых случаях даже при 1200°С.

Поделиться с друзьями: