Великий квест. Гении и безумцы в поиске истоков жизни на Земле
Шрифт:
271
Bartel D. P., Szostak J. W. Isolation of new ribozymes from a large pool of random sequences. Science, vol. 261, iss. 5127, pp. 1411–1418. 1993.
272
Orgel L. E. Molecular replication. Nature, vol. 358, pp. 203–209. 1992.
273
Johnston W. K. et al. RNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension. Science, vol. 292, iss. 5520, pp. 1319–1325. 2001.
274
Wochner A. et al. Ribozyme-Catalyzed Transcription of an Active Ribozyme. Science, vol. 332, iss. 6026, pp. 209–212. 2011.
275
Fox S. W. (ed) The Origins of Prebiological Systems and of their Molecular Matrices, p. 18. 1965. Elsevier, Inc.
276
Schwartz A. W. James P. Ferris 1932–2016. Origins of Life and Evolution of Biospheres, vol. 47, iss. 1, pp. 1–2. 2017.
277
Я
278
Это была та самая лекция, в которой Бернал предположил, что первичная атмосфера не была восстановительной, – мы обсуждали это в главе 6.
279
Ferris J. P. et al. Mineral catalysis of the formation of dimers of 5’ – AMP in aqueous solution: The possible role of montmorillonite clays in the prebiotic synthesis of RNA. Origins of Life and Evolution of the Biosphere, vol. 19, iss. 2, pp. 165–178. 1989.
280
Ferris J. P. et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature, vol. 381, pp. 59–61. 1996.
281
Лишенный остатка фосфорной кислоты нуклеотид носит название нуклеозид. По-видимому, это сходство названий призвано запутать и без того перегруженных терминологией научных журналистов.
282
Schwartz A. W., Orgel L. E. Template-directed synthesis of novel, nucleic acid-like structures. Science, vol. 228, iss. 4699, pp. 585–587. 1985.
283
Joyce G. F. et al. The case for an ancestral genetic system involving simple analogues of the nucleotides. PNAS, vol. 84, iss. 13, pp. 4398–4402. 1987.
284
Achilles T., von Kiedrowski G. A self-replicating system from three starting materials. Angewandte Chemie International Edition, vol. 32, iss. 8, pp. 1198–1201. 1993.
285
Sievers D., von Kiedrowski G. Self-replication of complementary nucleotide-based oligomers. Nature, vol. 369, pp. 221–224. 1994.
286
Nielsen P. E. et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, vol. 254, iss. 5037, pp. 1497–1500. 1991.
287
Wittung P. et al. DNA-like Double Helix formed by Peptide Nucleic Acid. Nature, vol. 368, iss. 6471, pp. 561–563. 1994.
288
Miller S. L. Peptide nucleic acids and prebiotic chemistry. Nature Structural Biology, vol. 4, iss. 3, pp. 167–169. 1997.
289
Nelson K. E. et al. Peptide nucleic acids rather than RNA may have been the first genetic molecule. PNAS, vol. 97, iss. 8, pp. 3868–3871. 2000.
290
Schoning K.-U. et al. Chemical Etiology of Nucleic Acid Structure: The ?-Threofuranosyl- (3’– >2’) Oligonucleotide System. Science, vol. 290, iss. 5495, pp. 1347–1351. 2000.
291
Yu H. et al. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chemistry, vol. 4, pp. 183–187. 2012.
292
Видимо,
в этом случае их следует назвать “треозимами”.293
Yonath A. et al. Crystallization of the large ribosomal subunit from B. stearothermophilus. Biochemistry International, vol. 1, pp. 428–35. 1980.
294
Yonath A. et al. Some X-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. Journal of Molecular Biology, vol. 177, iss. 1, pp. 201–206. 1984.