Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности
Шрифт:
Однако в ноябре 2016 г. аудиторская проверка Системы техасских университетов (к которой относится Центр Андерсона) выявила проблемы в хьюстонской больнице. Был опубликован сенсационный отчет «Специальная проверка закупочных процедур по проекту Oncology Expert Advisor Онкологического центра имени М. Д. Андерсона». Аудит показал, что на разработку ОЕА уже ушло $62 млн, что система еще не использовалась для лечения пациентов и вообще не была интегрирована в электронную систему медицинских карт больницы и что подходы к управлению проектом и ведению отчетности оставляли желать лучшего. Проект OEA был приостановлен на неопределенный срок – фактически Watson ушел в академический отпуск, так и не увидев больного. Руководитель проекта в 2015 г. перешел на другую работу в Системе техасских университетов. Через несколько месяцев после публикации аудиторского отчета в отставку подал и генеральный директор.
Тем не менее, пока шла разработка проекта OEA, в Центре Андерсона осуществлялись и другие проекты, связанные с ИИ. Они реализовывались под руководством
Центр Андерсона также не отказался от использования ИИ для диагностики и лечения рака. Еще одна программа зондирования получила название APOLLO (Программа адаптивного, пациент-ориентированного долгосрочного обучения и оптимизации). Она использует машинное обучение для генерации детальных прогностических моделей того, как пациенты с различными геномными профилями и историями болезни реагируют на лечение рака [5] . Хотя проект использует (возможно, не слишком удачно) чересчур общую и громкую терминологию, применявшуюся ранее при описании Oncology Expert Advisor, он опирается на методы машинного обучения, которые отлаживались десятилетиями, и похож на проекты, осуществляемые в ряде других центров исследования рака.
5
"Research Platform for the Moon Shots Program – APOLLO," M.D. Anderson Cancer Center website, accessed February 12, 2018,
https://www.mdanderson.org/cancermoonshots/research_platforms/apollo.html.
Сингапурский банк DBS – крупнейший банк Юго-Восточной Азии и лидер в использовании технологий для улучшения обслуживания и операционной деятельности. Когда-то его называли «чертовски медленным», но в 2016 г. журнал Euromoney объявил DBS лучшим цифровым банком в мире. Уже несколько лет банк уделяет особенное внимание ИИ. Он стал одной из первых коммерческих организаций, заключивших контракт с IBM на разработку приложения на базе искусственного интеллекта. Приложение, о грядущем выходе которого было объявлено в январе 2014 г., должно было стать интеллектуальным роботом-советником, который консультировал бы клиентов DBS по вопросам управления активами и возможностей для инвестирования. Роботы-советники есть и в других финансовых учреждениях, но их рекомендации, как правило, недостаточно хороши, поскольку им недостает интеллекта.
DBS хотел получить систему, которая могла бы переваривать различные вводные данные – исследовательские отчеты, новости компании, индикаторы настроений на рынке и существующий портфель клиента, а затем давать рекомендации банковским менеджерам по работе с клиентами и самим клиентам. Но директор по информационным технологиям DBS Дэвид Гледхилл отметил, что технология не готова решить столь серьезную проблему:
Мы начали очень рано, и в то время технология Watson еще не достигла зрелости. Она не была готова стать новейшим разносторонним консультантом по благосостоянию, как планировали и DBS, и IBM. Приступив к реализации этого проекта, мы опередили время. Оглядываясь назад, можно понять, что технология не была достаточно зрелой. Она не была подготовлена для многих из наших сценариев использования. Отчасти проблема заключалась в том, что программное обеспечение не могло понять множество диаграмм и графиков, которые должно было понимать. Кроме того, исследовательские отчеты банка были представлены в различных форматах, а это затрудняло анализ данных системой Watson без особого вмешательства человека. Таким образом, хотя мы и разработали пилотного робота-советника, он был вдвое менее эффективен и продуктивен, чем средний менеджер по работе с клиентами. Мы извлекли из этого урок и остановили проект на ранней стадии.
Гледхилл и его коллеги продолжают оценивать новые технологии, которые могут быть полезны для совершенствования интеллектуального робота-советника, но пока они ничего не нашли. Однако по-прежнему верят в ценность ИИ. Они сосредоточили внимание на важных, но несколько менее масштабных проблемах своего бизнеса, которые могут быть хотя бы частично решены с помощью когнитивных технологий.
Проекты ИИ, реализуемые DBS, охватывают широкий спектр областей, но большинство из них касается операционных процессов. Например, банк использует модели машинного обучения для прогнозирования необходимости пополнения банкоматов
наличными. Если раньше наличные в банкомате заканчивались в среднем раз в три месяца, то теперь этот показатель составляет раз в 55 лет, а количество поездок для пополнения банкоматов сократилось более чем на 10 %.В сфере кадров DBS прогнозирует отток своих продажников. На основе ряда факторов, выявленных моделями машинного обучения (включая время отпуска, количество больничных, а также скорость ответов на электронные письма), банк может с 85 %-ной вероятностью предсказывать, уволится ли кто-либо из сотрудников, за три месяца до увольнения.
Банк также использует ИИ, чтобы выявлять мошенничество в области торговли ценными бумагами, строить алгоритмические модели кредитования, управлять чат-ботами в службе поддержки клиентов, а также выполнять ряд других задач. Особенно большую роль ИИ играет в исключительно цифровом банке DBS в Индии, где работает на 90 % меньше сотрудников, чем в обычном банке. Во всем банке взаимодействия клиентов с ИИ на 15 % снижают количество звонков в службу поддержки.
Гледхилл прокомментировал изменение фокуса ИИ в DBS:
Первоначальный робот-советник был нашим самым амбициозным проектом. Он пошел не по плану, потому что мы хотели получить продукт, намного опережающий время. Однако мы извлекли уроки из этого первого проекта и не отступились от ИИ. Мы идем по пути наименьшего сопротивления, используя ИИ для оптимизации бизнес-процессов в банке, и добиваемся огромных успехов. По отдельности эти проекты не столь амбициозны, но в совокупности они трансформируют бизнес, поскольку способствуют снижению операционных расходов, повышению производительности труда сотрудников, уменьшению количества ошибок и увеличению скорости вывода продуктов на рынок. Главное для нас – не сократить численность персонала, а существенно улучшить обслуживание клиентов и перейти от транзакционного банкинга к консультативному. Мы стремимся увеличить доход и расширить бизнес, сохраняя при этом разумное соотношение расходов и доходов.
Наиболее активно искусственный интеллект (как в своих продуктах, так и во внутренних процессах) используют такие технологические компании, как Amazon.com. Эта быстрорастущая компания заявляет, что «инвестировала» в ИИ более 20 лет, то есть на протяжении почти всей своей истории [6] . ИИ и технологии машинного обучения лежат в основе успешных продуктов Amazon по распознаванию голоса Echo/Alexa. Кроме того, хорошо известно, что Amazon находит потенциально прорывное применение искусственному интеллекту и в своей бизнес-модели, в том числе организуя доставку с помощью дронов в рамках проекта Prime Air и полностью автоматизированное обслуживание в магазинах Amazon Go.
6
"Machine Learning at AWS" website, accessed February 11, 2018, https://aws.amazon.com/machine-learning/.
Эти проекты сталкиваются с серьезными техническими, поведенческими и нормативными проблемами и реализуются не в полном объеме. Тем не менее кажется вероятным, что Amazon хотя бы частично преуспеет в своем зондировании (недавно я посетил магазин Amazon Go в Сиэтле – автоматизированная система обслуживания работает достаточно хорошо, хотя в магазине еще есть несколько сотрудников). Немногим компаниям под силу тягаться с Amazon в этой сфере. Компания располагает целым рядом алгоритмов искусственного интеллекта (как с открытым исходным кодом, так и проприетарных), которые предлагает клиентам и использует сама в Amazon Web Services. Складывается впечатление, что никто точно не знает, сколько специалистов по данным работает в компании, но сейчас в Amazon открыто 505 вакансий соответствующей направленности. На сайте Amazon по подбору персонала можно найти 171 вакансию в области искусственного интеллекта. Оба числа намного больше количества сотрудников этой сферы в других компаниях, которым и не снились такие цифры [7] . Если кто-то и может создать смелые, сложные и хорошо заметные когнитивные технологии для внутреннего и внешнего использования, похоже, это Amazon.
7
Glassdoor, Amazon.com "data scientist" openings, accessed February 11, 2018.
Однако в 2017 г. в своем письме акционерам Amazon.com Джефф Безос утверждал, что ИИ (в частности, машинное обучение) окажет на компанию значительное, но незаметное влияние:
Но многое из того, что мы делаем с машинным обучением, происходит не на виду. Машинное обучение определяет наши алгоритмы прогнозирования спроса, поискового ранжирования продуктов, рекомендаций по продуктам и предложениям, размещения товаров, обнаружения мошенничества, переводов и многого другого. Хотя это и не столь очевидно, машинное обучение в основном будет воздействовать на процессы именно таким образом – незаметно, но значительно улучшая основные операции [8] .
8
"Bezos Letter to Shareholders," CNBC, https://www.cnbc.com/2017/04/12/amazon-jeff-bezos-2017-shareholder-letter.html.