Чтение онлайн

ЖАНРЫ

Внутреннее устройство Linux
Шрифт:

Понимание того, как использовать другие системы компоновки, кроме утилиты Autoconf (например, CMake и SCons).

• Настройка сборок для вашего ПО. Если вы разрабатываете собственные программы, вам необходимо выбрать систему сборки и научиться применять ее. При создании пакетов с помощью утилиты GNU Autoconf вам может пригодиться книга Джона Кэлкоута (John Calcote) Autotools («Утилиты Autotools») (No Starch Press, 2010).

• Компиляция ядра системы Linux. Система сборки ядра полностью отличается от других инструментов. У нее есть собственная система конфигурирования,

предназначенная для точной подгонки под ваше ядро и модули. Однако сама процедура проста. Если вы понимаете, как работает загрузчик системы, у вас не возникнет никаких затруднений. Тем не менее следует с осторожностью заниматься этим: всегда проверяйте, что у вас под рукой есть старое ядро на тот случай, когда вы не сможете загрузиться с помощью нового.

• Специализированные пакеты исходного кода. Дистрибутивы Linux поддерживают собственные версии исходного программного кода в качестве специальных пакетов исходного кода. Иногда могут оказаться полезными исправления, которые расширяют функциональность или исправляют ошибки, недоступные для исправления как-либо иначе. Системы для управления пакетами исходного кода содержат инструменты для автоматической сборки, например debuild в Debian и mock для систем на основе RPM.

Сборка программного обеспечения — это зачастую стартовая площадка для изучения языков программирования и методов разработки ПО. Инструменты, которые вы видели в последних двух главах, снимают завесу тайны с того, откуда берутся ваши системные программы. Совсем несложно выполнить дальнейшие шаги: заглянуть в исходный код, внести изменения и создать собственную программу.

17. Строим на фундаменте

В главах этой книги были рассмотрены фундаментальные компоненты системы Linux, начиная с низкоуровневой организации ядра и процессов, устройства сети и заканчивая некоторыми инструментами, предназначенными для сборки программного обеспечения. В итоге вы умеете делать довольно многое. Поскольку Linux поддерживает почти любой тип общедоступной среды программирования, приложения доступны в изобилии. Рассмотрим некоторые прикладные области, в которых преуспевает Linux, и поймем, как к ним относится то, что вы узнали из этой книги.

17.1. Веб-серверы и приложения

Linux является популярной системой для веб-серверов, а правящим монархом среди серверов приложений Linux является Apache HTTP Server (который обычно называют просто Apache). Другим веб-сервером, о котором вы часто будете слышать, является Tomcat (это также проект разработчиков Apache); он обеспечивает поддержку Java-приложений.

Сами по себе веб-серверы выполняют немногое: они могут хранить файлы, и на этом все. Конечной целью большинства веб-серверов, таких как Apache, является предоставление платформы для использования веб-приложений. Например, проект Wikipedia построен на пакете MediaWiki, который вы можете использовать, чтобы организовать собственный wiki-проект. Системы управления контентом вроде Wordpress и Drupal позволяют вам создавать собственные блоги и мультимедийные сайты. Все эти приложения основаны на языках программирования, которые особенно хорошо проявляют себя в Linux. Так, например, системы MediaWiki, Wordpress и Drupal написаны на языке PHP.

Строительные блоки, из которых составлены веб-приложения, являются в большой степени модульными, поэтому легко добавлять собственные расширения и создавать приложения с помощью таких фреймворков, как Django, Flask и Rails, которые предоставляют средства для распространенных веб-инфрастуктур и функций, например, использование шаблонов, управление многими пользователями

и поддержка баз данных.

Нормально функционирующий веб-сервер зависит от прочного основания в виде операционной системы. В частности, чрезвычайно важным является материал, изложенный в главах 8–10.

Конфигурация вашей сети должна быть безупречной, и вы, что, пожалуй, более важно, должны уметь управлять ресурсами. Разумно распределенное дисковое пространство и память имеют решающее значение, особенно если вы планируете использовать базу данных в своем приложении.

17.2. Базы данных

Базы данных — это специальные службы для хранения и извлечения данных, и в Linux можно запускать многие различные серверы и системы баз данных. Две основные особенности делают базы данных привлекательными: они обеспечивают простой и унифицированный подход к управлению индивидуальными фрагментами и группами данных, а также превосходную скорость доступа.

Базы данных облегчают приложениям проверку и изменение данных, в особенности если сравнить их с анализом и изменением текстовых файлов. К примеру, могут возникнуть сложности при управлении файлами /etc/passwd и /etc/shadow в Linux в сети компьютеров. Вместо них можно настроить базу данных, которая предоставляет протокол LDAP (Lightweight Directory Access Protocol, облегченный протокол доступа к (сетевым) каталогам), чтобы снабдить необходимой информацией систему аутентификации Linux. Конфигурация на стороне клиента Linux простая; все, что потребуется сделать, — это отредактировать файл /etc/nsswitch.conf и добавить дополнительную конфигурацию.

Основная причина, по которой базы данных обычно обеспечивают превосходное быстродействие при извлечении данных, заключается в том, что они выполняют индексирование, чтобы отслеживать размещение данных. Допустим, у вас есть набор данных, которые представляют справочник, содержащий имена, фамилии и телефонные номера. Можно использовать базу данных, чтобы поместить индекс на любом из этих атрибутов, например на фамилии. Тогда при поиске кого-либо по фамилии база данных просто сверяется с индексом фамилий, а не просматривает весь справочник полностью.

Типы баз данных. Базы данных бывают двух основных типов: реляционные и нереляционные. Реляционные базы данных (также называемые реляционными системами управления базами данных, РСУБД; Relational Database Management Systems, RDBMS), такие как MySQL, PostgreSQL, Oracle и MariaDB, являются базами данных общего назначения, которые отличаются способностью объединять различные наборы данных. Допустим, у вас есть два набора данных: один с почтовыми индексами и именами, а другой — с почтовыми индексами и соответствующими населенными пунктами. Реляционная база данных позволила бы вам очень быстро извлечь список имен людей, проживающих в одном населенном пункте. Обычно с реляционными базами данных «разговаривают» с помощью языка программирования SQL (Structured Query Language, язык структурированных запросов).

Нереляционные базы данных, иногда называемые базами данных NoSQL, призваны решать частные задачи, с которыми нелегко справляются реляционные базы данных. Например, базы данных для хранения документов, такие как MongoDB, стремятся облегчить хранение и индексацию документа в целом. Базы данных «ключ — значение», например redis, делают акцент на производительности. Для доступа к базам данных NoSQL нет общего языка запросов, подобного SQL. Вместо этого с ними работают с помощью различных интерфейсов и команд.

Поделиться с друзьями: