Вселенные: ступени бесконечностей
Шрифт:
Аксиоматично и утверждение о том, что вселенные не только ветвятся в каждый момент элементарного взаимодействия, но и имеют возможность «склеиваться», взаимодействовать друг с другом. Идея склеек даже более аксиоматична (если аксиомы можно сравнивать по уровням), чем идея ветвления, поскольку уравнение Шредингера в те годы предполагалось линейным, и как следствие, все его решения (ветви) друг от друга не зависели, из чего следовало, что и миры, этими решениями описываемые, не имеют возможности друг с другом взаимодействовать.
Впоследствии эпизоды ветвлений и склеиваний миров многократно наблюдались и подтверждались экспериментально, о чем пойдет речь далее. Какой смысл сейчас рассматривать аксиомы, экспериментально подтвержденные? Тем не менее, подобный анализ имеет онтологическое значение, и вот почему. Исторически сложилось, что копенгагенская интерпретация вполне удовлетворяла практически всех исследователей — как теоретиков, так и экспериментаторов. Математический аппарат квантовой физики прекрасно справлялся со всеми расчетами.
Идея Эверетта не изменила уже существовавших квантовых расчетов, не должна была изменить их в будущем, и, к тому же, в силу линейности уравнений Шредингера, ветви Эверетта не имели возможности взаимодействовать друг с другом, и, следовательно, экспериментаторы не имели ни малейшего шанса в опыте доказать (или опровергнуть) предположение о ветвлении мироздания.
Если существовала бы возможность рассчитать наблюдаемые явления, вытекавшие исключительно из идеи Эверетта, то наука о многомирии не нуждалась бы в аксиоматике, ее результаты были бы просто следствием, вытекавшим из уравнений Шредингера. Ситуация, однако, была скорее похожа на ту, что возникла в геометрии, когда математики задумались над недостаточной убедительностью пятого постулата Евклида. Действительно, пятый постулат (о параллельности) имел тот же недостаток, что впоследствии копенгагенская интерпретация квантовой физики: как и эта интерпретация, пятый постулат исключал все прочие возможности поведения прямых параллельных линий, кроме единственной: параллельные не пересекаются. Аналогичный коллапс возможностей, верно? И невозможность доказать противное, поскольку невозможно проследить поведение прямых в бесконечности, как невозможно проследить дальнейшую судьбу ответвленных миров в «физической геометрии» Эверетта.
Выход был — в принятии иных постулатов. Лобачевский принял аксиому о том, что параллельных прямых не существует, и в бесконечности все так называемые прямые расходятся друг от друга. Риман принял противоположные постулат о том, что параллельных прямых не существует, и все так называемые параллельные прямые в бесконечности пересекаются. Из этих постулатов, которые были рассмотрены вовсе не из практических соображений, а исключительно из чистой возможности, возникли новые типы геометрий. То, что сначала выглядело игрой изощренного математического ума, но впоследствии оказалось физической реальностью.
Аналогичная ситуация сложилась в квантовой физике после работы Эверетта. Копенгагенская интерпретация прекрасно «работала», как прекрасно «работал» многие столетия пятый постулат Евклида. Как и пятый постулат, копенгагенская интерпретация имела «слабое место» — необходимость единственности параллельных и необходимость единственности волновой функции. Как Лобачевский принял постулат о том, что параллельных прямых не существует, и реально так называемые параллельные расходятся, так и Эверетт пришел к выводу, что «расходятся», ветвятся миры, описываемые разными решениями уравнений Шредингера.
Продолжая аналогию, можно сказать, что идея Лебедева о склейках разветвившихся миров аналогична постулату Римана о том, что параллельных прямых не существует, поскольку они в бесконечности пересекаются.
Постулаты Римана и Лобачевского в доказательствах, конечно, не нуждались. Равно не нуждались в доказательствах постулат Эверетта о ветвлении миров и постулат Лебедева об их склейках. Принятие постулатов — дело внутренней веры каждого исследователя.
Надеюсь, теперь читатель понимает, почему я выше резко возражал против использования в физике термина «параллельные миры» как искажающего физическую реальность. Как в геометриях Римана и Лобачевского нет параллельных прямых, так нет и параллельных миров в интерпретациях Эверетта и Лебедева. В первом случае миры «расходятся», ветвятся из некой точки бифуркации. Во втором случае миры могут в разных точках пространства-времени пересекаться, «склеиваться».
Принятие той или иной аксиомы (постулата) — проблема не физического анализа. На первых этапах развития аксиоматических теорий это вопрос веры и взаимопонимания.
Аксиоматическая природа эвереттики стала одной из причин того, что физике (особенно экспериментальной) понадобились десятилетия для принятия этой важной дисциплины в ареал общепринятых физических теорий. Не конкретные наблюдения (которые, конечно, были впоследствии проведены, иначе мы сейчас жили бы в другой ветви многомирия) привели к принятию эвереттики философами, физиками и историками науки, но именно красота аксиоматики и внутреннее совершенство эвереттических построений (затем пришло и внешнее оправдание в виде наблюдательных и экспериментальных подтверждений).
Безусловно, отдельным типом многомирия является множество миров, возникающих в результате инфляционного расширения Вселенной в процессе Большого взрыва. Желающих более подробно узнать, что такое космологическая инфляция, отсылаю к многочисленным популярным описаниям этого явления. Рекомендую, например, книги Грина (2011) и современный анализ в работе Houston & Wexford (2052).
В
чем принципиальное отличие инфляционного многомирия от лоскутного? Инфляционные пузырьки-вселенные возникают в результате эволюции первичного инфляционного образования. Пузырьки-вселенные связаны общим эволюционным процессом со всеми предшествовавшими мирами-пузырьками (и следовательно — с последующими также, поскольку все вновь возникающие вселенные связаны с предшествовавшими взаимными связями). Но еще более важной особенностью инфляционного многомирия является то обстоятельство, что пузырьки-миры — это новые вселенные с собственным пространством-временем, а потому законы физики, действующие в пределах одного пузырька-мира, не распространяются на другой пузырек-мир. Топологически две любые вселенные-капли, возникшие в процессе общей инфляции, могут располагаться внутри друг друга, вне друг друга, пересекаться в множестве точек и так далее. Каждая капля-вселенная практически мгновенно достигает размеров, сравнимых с нашей Вселенной, и при этом мы не можем говорить о том, что эта вторая капля располагается вне границ нашей Вселенной, как не можем говорить и о том, что эта вторая капля располагается внутри нашей Вселенной. Эти две вселенные могут, с точки зрения математики, занимать одно и то же пространство-время, никак друг с другом не взаимодействуя. Но не исключается и вариант, когда эти две вселенные могут взаимодействовать, и для такого типа «межкапельных» взаимодействий, очевидно, неприменим постулат Эйнштейна о скорости света, как пределе скоростей. Принцип относительности безусловно действует в каждой капле отдельно, но неприменим при межкапельных (межмировых) взаимодействиях. Именно поэтому мы можем говорить, что инфляционное расширение бесконечно порождает новые миры с собственным пространством-временем (или отсутствием пространства-времени, поскольку существуют вселенные, не обладающие четырьмя известными нам координатами.Развитие в восьмидесятых годах ХХ века теории струн, суперструн, а затем, как следствие, теории бран, привело к открытию еще одного вида многомирий — струнной или бранной мультивселенной. Читатели, желающие углубить свои познания в области теории струн и бран, вполне могут ограничиться чтением монографии Ступальского, где в очень доступной и, в то же время, четко научной форме приведены основные положения этой самой популярной теории конца ХХ — начала ХХI века. Ступальский справедливо отмечает, что любая из многочисленных вариаций струнных теорий (равно, как и теорий бран, супербран и пр.) с неизбежностью приводит к большому числу многомирий. Наша Вселенная, согласно струнной теории, существует (во всяком случае, ее существование может быть описано) на одной из «длинных» суперструн или на одной из бран, обладающих соответствующей нашей Вселенной числом размерностей. Поскольку число различных струн и (или) бран, по крайней мере, больше единицы, а в принципе, может, даже по первым, не очень надежным, оценкам, достигать непредставимого числа 10 500 (многие исследователи говорят о бесконечно большом количестве), и на каждой струне (бране) существует своя вселенная со своими физическими законами, то понятно, что существует тип многомирия, который можно назвать суперструнной (бранной) мультивселенной.
Физика бранной мультивселенной может существенно отличаться от физики инфляционной мультивселенной, но есть между ними нечто общее — а именно, взаимодействие миров на бранах подчиняется специфическим законам, отличающимся от законов физики, действующих внутри каждой из таких единичных вселенных. Любые две (и более) бранные вселенные могут вступать во взаимодействие (аналогично склейкам в эвереттовском многомирии), любая бранная вселенная может порождать новые бранные вселенные (аналогично ветвлениям в эвереттовском многомирии). Происходит это потому, что одномерные струны, двух-, трехмерные браны находятся внутри пространства с большим числом размерностей, и пространство это населено множеством (в пределе — бесконечным) других струн и бран.
Взаимодействия бран порождают еще один тип многомирия — циклическую мультивселенную. Впрочем, я полагаю, что в данном случае физика все же имеет дело не с новым видом многомирия, а все с той же бранной мультивселенной, где, в результате столкновения (или иного взаимодействия) бран возникают вселенные, эволюционирующие затем независимо вплоть до очередного столкновения (взаимодействия) с очередной браной. Профессор Ступальский предпочитает не замечать (вслед за многими физиками) того обстоятельства, что циклическая мультивселенная есть лишь частный случай бранного многомирия, и в списке известных видов многомирий отводит циклической мультивселенной отдельную строку. Не думаю, что такой подход является целесообразным, хотя готов согласиться с профессором Ступальским в том, что при современном взгляде на многомирие многомирий (о чем речь пойдет ниже) выделение подсистемы из системы в отдельную систему не влияет, по крайней мере, ни на описание самого многомирия данного типа, ни даже на количество многомирий в метамире, поскольку это количество или бесконечно (по одним оценкам), или приближается к бесконечности (по другим оценкам). Мое замечание имеет скорее эпистемологическое значение — точность классификации нужна скорее науковедению, нежели конкретным физическим расчетам конкретных многомирий.