Высшие знания
Шрифт:
Волновое поле электрона принципиально отличается от волнового поля нейтрино. Волны электрона возбуждаются узлами, которые движутся со скоростью С. А по линии спирали скорость движения каждой точки пропорциональна расстоянию до узла. В такой системе амплитудное значение плотности М+ и М- на радиусе обратно пропорционально квадрату расстояния до электрона, в отличие от нейтрино, у которого амплитуда плотности обратно пропорциональна расстоянию в первой степени.
Поля электрона являются разновидностью гравитационно-магнитного поля. В отличие от поля нейтрино, у которого воздействие поля на внешнюю среду за цикл пульсаций равно нулю, у электрона, обладающего магнитным моментом, внешняя среда испытывает влияние потока Вакуума, возбужденного электроном, и смещается от радиального поля к осевому. Принято считать поле положительным, если вектор напряженности поля направлен от источника, и отрицательным, если вектор направлен к источнику.
Отличие позитрона от электрона заключается в том, что в области роста плотности сжатой массы узлы его вращающейся структуры представляют собой разрежение М+ и М-. Позитрон можно представить как электрон, у которого в узлах находятся дырки М+ и М-. Иными словами, лопасти насоса изготовлены не из твердого материала, а из прочной, сохраняющей форму, пустоты. Эти пустоты захватывают массу своего знака из радиального, внешнего объема, а пустоты противоположного знака выбрасывают захваченную массу внутрь позитрона, разгоняя ее до скорости света. Поля позитрона аналогичны полям электрона, но имеют противоположные, в сравнении с ним знаки.
1.4. Резононы и мезоны
Осевые поля электрона и позитрона являются своеобразными ловушками для нейтрино и фотонов. Вблизи узлов Вакуум движется со скоростью волны. При этом нейтрино, неподвижное в системе координат частицы, движется относительно Вакуума со скоростью волны в направлении растущей плотности и потому имеет характеристики антифотона.
В электроне тандем дырок антифотона не может ни оторваться от узлов , поскольку в этой области Вакуум движется со скоростью С, ни сблизиться с узлами противоположного знака, поскольку узлы также движутся со скоростью С. В погоне за узлами антифотон приобретает вращательное движение вокруг оси электрона. Если антифотон имеет длину волны, равную длине волны узлов электрона, то образуется стабильная вращающаяся структура. Можно представить, что электрон приобрел пробку в виде антифотона.
Если условия внешней среды соответствуют существованию позитрона, то захваченное нейтрино также будет иметь характеристики антифотона. В осевом поле позитрона к его узлам в область повышенной плотности будет двигаться тандем дырок волны антифотона. Область повышенной плотности вращается вместе с узлами позитрона со скоростью С, поэтому достичь узлов антифотон не может. Антифотон будет исполнять роль пробки позитрона.
Если захваченное нейтрино имеет длину волны, отличающуюся от длины волны электрона (позитрона), то оно будет выброшено рано или поздно из центральной области вследствие возникновения биений. Вылетевшая пробка вращается некоторое время и, теряя энергию, превращается в нейтрино. Выброшенную пробку можно представить в виде пропеллера, лопасти которого по мере рассеяния энергии вращения втягиваются к центру и появляется пульсация, характерная для нейтрино. В период интенсивного излучения энергии вращения такой пропеллер имеет характеристики резонона.
У электрона (позитрона) одинаково активны оба осевых поля. Захват нейтрино обоими осевыми полями приводит к изменению характеристик электрона (позитрона). Осевые пробки электрона увеличивают разрежение в центральной области и снижают амплитуду осевых волн. При этом возникает дополнительная деформация его узлов, стягивание их к оси вращения, частота излучаемых радиальных волн возрастает. Электрон, захвативший два нейтрино, превращается в m -мезон (мюон). Если следовать понятиям современной физики, обозначающей электрон знаком е- , а позитрон знаком е+, то после захвата двух нейтрино они превратятся соответственно в m - и m + -мезоны. Нужно только помнить, что это одна и та же частица, проявляющая себя по-разному в отличающихся условиях внешней среды.
Активность осевых полей электрона, заткнутых пробкой нейтрино, снижается, но остается достаточной для слипания оказавшихся поблизости мезонов. При слипании двух мюонов образуется структура, имеющая характеристики p 0-мезона.
Амплитуда осевых полей p 0-мезона остается достаточной для слипания с оказавшимися поблизости мюонами. Присоединение m -мезона превращает p 0-мезон в p - -мезон или p + -мезон. А слипание с p 0-мезонами или с p - (p + )-мезонами приводит к образованию структур, обладающих характеристиками k-мезонов.
Слипание мезонов может привести к образованию большого спектра элементарных частиц, в зависимости от набора составляющих элементов. В экспериментах обнаруживаются только наиболее стабильные
из них.В обычных условиях расстояния между электронами очень велики, а окружающий их объем пространства насыщен нейтрино разных измерений. Поэтому в чистом виде электрон существует недолго. Осевые поля его захватывают нейтрино из окружающего пространства. Нейтрино низких измерений выбрасываются радиальными полями, а нейтрино высоких измерений после переходных процессов во внутреннем объеме электрона в результате биений выбрасываются в осевом направлении и замещаются другими нейтрино. В этих условиях электрон работает как частотный сепаратор, подбирая себе пробку нужной длины волны, после чего он превратится в мезон.
Превращение электрона в мезон приводит к изменению его частотных характеристик, поэтому стабильность мезона невысока и определяется длительностью переходного процесса изменения частотных характеристик, после чего возникшие биения выбрасывают захваченное нейтрино. После возврата электрона в первоначальное частотное состояние это же нейтрино может быть захвачено повторно и переходный процесс повторится.
1.5. Нуклоны и гипероны
При массовом рождении электронов, которое происходит во время столкновения амплитудных поверхностей волн противоположного знака, расстояния между ними очень малы, а частотные характеристики совпадают. В этих условиях электроны взаимодействуют между собою осевыми полями. Возможны два варианта взаимодействия: сближение двух электронов при совпадающем направлении вращения и сближение при встречном вращении. В первом случае сближение сопровождается синхронизацией и заканчивается непосредственным взаимодействием узлов противоположного знака. В результате этого электроны распадаются на нейтрино. Во втором случае, вследствие встречного вращения, относительная орбитальная скорость узлов в два раза превышает скорость сближения узлов противоположного знака. Поэтому они вступают во взаимодействие с узлом массы одноименного знака, но не успевают достичь друг друга. Возникшая при этом сила отталкивания возвращает электроны в исходное положение. Затем процесс сближения повторяется. При этом два объединившихся электрона находятся в колебательном движении вдоль оси вращения. Образовавшаяся структура обладает высокой стабильностью и имеет характеристики керна нуклона. Керн нуклона может быть левого или правого направления вращения. В условиях роста плотности сжатой массы этот же керн нуклона имеет характеристики керна антинуклона.
Керн нуклона имеет семь активных полей. Его можно представить как два рабочих колеса центробежного насоса, которые вращаются в противоположные стороны и колеблются в осевом направлении. Двумя внешними осевыми полями Вакуум всасывается внутрь рабочих колес. Два внутренних осевых поля также всасывают Вакуум внутрь, создавая отрицательное дисковое поле высокой амплитуды и с малым углом рассеяния. Дисковое поле имеет вид спиральных волн большой амплитуды. Спирали закручены в противоположные стороны. Между ними находится тонкий диск отрицательного поля, в котором спирали волн меняют направление. Поле тонкого диска имеет наивысшую амплитуду, но энергия его стремится к нулю при бесконечно малой толщине диска. Кроме этих полей керн нуклона имеет два положительных поля в плоскости вращения лопастей рабочих колес. В этих полях Вакуум выбрасывается в виде спиральных волн, подобно тому, как это происходит в электроне, но их угол рассеяния значительно меньше.
Высокое разрежение в центральной области керна нуклона создает дополнительную деформацию узлов и стягивает их к оси вращения, вследствие чего частота вращения системы увеличивается. Однако энергия системы не изменяется, поэтому все подобные частотные трансформации не меняют магнитный момент полей, количество движения Вакуума, связанного с каждым входящим в систему электроном.
Керн нуклона может захватить одним из внешних осевых полей мюон. При одинаковом направлении вращения мюон проваливается в яму отрицательного осевого поля керна, но деформированное подобно пружине нейтрино не позволяет узлам мюона и керна сблизиться до непосредственного взаимодействия. Вследствие возникающих биений мюон периодически выбрасывается из поля керна, но затем вновь захватывается им. Образовавшаяся структура имеет характеристики нейтрона.
Поля нейтрона замкнуты друг на друга. Вектор внешнего поля имеет преимущественно осевое направление. При этом Вакуум движется в ограниченном объеме пространства. Амплитуда волн за пределами этого объема очень мала.
Если нейтрон захватит мюон и вторым внешним осевым полем, то он превратится в протон. Векторы его полей сместятся в радиальном направлении. Объем пространства, в котором циркулирует Вакуум, резко возрастет. Возрастание потока и амплитуды волн в радиальном направлении создаст эффект электрического заряда. Знак электрического заряда протона определяют его отрицательные дисковые поля, которые образованы внутренними осевыми полями. Дисковые поля замыкаются с положительными радиальными полями узлов.