Чтение онлайн

ЖАНРЫ

Взрывающиеся солнца. Тайны сверхновых
Шрифт:

Спустя какое-то время американский физик Роберт Оппенгеймер (1904–1967) и его ученик Джордж Михаил Волков разработали математические модели образования нейтронных звезд. Советский физик Лев Давидович Ландау (1908–1968) сделал то же самое независимо от них.

В тридцатые годы казалось вполне логичным, что результатом сверхновых было образование нейтронных звезд, но не было способа проверить это реальным наблюдением. Даже если нейтронные звезды действительно существовали, их крошечный размер, казалось, лишь подтвердил бы, что такая звезда, даже относительно близкая и наблюдаемая в крупный телескоп, выглядит чрезвычайно слабой. И если бы ее можно было увидеть, то решительно ничего нельзя было бы узнать о ней, кроме того,

что она чрезвычайно слаба. Так, например, звезда в центре Крабовидной туманности была слабой, но как можно поручиться, что это нейтронная звезда, а не белый карлик? Однако, какой бы она ни была, сам факт, что ее можно видеть, склонял чашу весов в пользу белого карлика.

Впрочем, была одна смелая надежда. Сам акт катастрофического сжатия должен неизбежно сопровождаться огромным скачком температуры, поэтому поверхность нейтронной звезды в момент ее образования имела бы температуру порядка 10 000 000 °C. При такой температуре, даже допуская несколько тысяч лет остывания, ее излучение включало бы изрядную долю рентгеновских лучей.

Отсюда следует, что если звезда очень маленькая и тусклая, но из района ее нахождения в небе приходят рентгеновские лучи, то ее можно сильно подозревать в принадлежности к нейтронным.

Эта отчаянная надежда переплетается, однако, с одним грустным фактом. Рентгеновские лучи не могут пробить атмосферу: они взаимодействуют с молекулами и атомами воздуха и уже не выживают как таковые при своем подлете к земной поверхности. Поэтому нейтронные звезды, может быть, и посылают сигналы высоких энергий, но это не меняет дела, или, по крайней мере, так казалось в 30-х годах.

РЕНТГЕНОВСКИЕ ЛУЧИ И РАДИОВОЛНЫ

Конечно, если бы ученые могли вести свои наблюдения за пределами земной атмосферы, все было бы по-другому.

Единственный путь выйти за атмосферу — применить ракету. Об этом выходе говорил Ньютон еще в 1687 г. Однако между осознанием и возможностью применить ракеты в практических целях лежала «дистанция огромного размера».

И все же это время пришло. Во время второй мировой войны немцы быстро продвигались вперед в деле использования ракет-носителей благодаря работам Вернера фон Брауна (1912–1977). Они намеревались использовать их как боевое оружие и преуспели бы в этом, но, к счастью для союзников, было уже слишком поздно. Немцам не хватило времени, чтобы развернуть их в достаточном количестве и отдалить свое поражение.

После войны, однако, и Соединенные Штаты и Советский Союз продолжили ракетные исследования, начав с того, на чем остановились немцы. В 1949 г. Соединенным Штатам удалось послать ракеты достаточно высоко, заставив их выйти за пределы атмосферы, а в 1957 г. Советский Союз с помощью ракеты-носителя вывел объект на околоземную орбиту.

Теперь появилась возможность работать с рентгеновскими лучами, поступающими прямо из космоса, и сразу же мог быть решен ряд проблем.

Например, спектр солнечной короны (его внешней атмосферы) обладал спектральными линиями, неотождествимыми с линиями известных элементов. Некоторые подумывали даже о том, что в солнечной короне существует неизвестный прежде элемент — «корониум».

Напротив, шведский физик Бенгт Эдлен (р. 1906) держался мнения, что названные линии — это атомы известных элементов, только находящихся в необычных состояниях: ведь солнечная корона имеет температуру 1 000 000 °C или выше.

Как же проверить, существует корониум или нет? Если Эдлен был прав, то сверхгорячая солнечная корона должна в изобилии посылать рентгеновские лучи, но в 1940 г. еще не было метода обнаружения этих лучей, даже если они и существовали.

С появлением ракет положение изменилось. В 1958 г. американский астроном Герберт Фридман использовал пуски шести ракет, которые поднимались высоко над атмосферой и были способны обнаружить рентгеновские лучи Солнца,

если б таковые существовали. В самом деле, эти лучи были обнаружены, солнечная корона имела температуру, предсказанную Эдленом, спектральные линии были линиями обычных элементов, находившихся в очень необычных условиях, а корониума не существовало.

Однако излучение Солнцем рентгеновских лучей преувеличено. Эти рентгеновские лучи легко получить лишь потому, что Солнце расположено к нам очень близко. Даже самые близкие к нам звезды, звезды системы Альфы Центавра, находятся в 270 000 раз дальше, чем Солнце. Если бы интенсивность рентгеновского излучения одной из звезд системы Альфы Центавра равнялась солнечной, то дошедший до нас ее рентгеновский луч составил бы 1/70 000 000 000 долю энергии аналогичного луча Солнца и мы попросту не смогли бы его заметить. Рентгеновские лучи от звезд, ушедших еще дальше, имеют еще меньшую вероятность быть обнаруженными.

Отсюда следует, что если Вселенная состоит только из звезд, подобных Солнцу, то очень сомнительно, что теми видами регистрирующих систем, какими мы сегодня располагаем, могли бы обнаружить какой-то иной источник рентгеновского излучения, кроме нашего Солнца. Но, с другой стороны, если бы существовали какие-то особые звезды с рентгеновским излучением огромной интенсивности (какими, например, могли быть нейтронные звезды), то их бы обнаружили.

Теперь было чрезвычайно важно определить, какие рентгеновские источники, если таковые вообще существуют, могли быть в небе: ведь каждый такой источник означал возможность какого-то сюрприза.

В 1963 г. Фридман обнаруживает внесолнечный источник рентгеновского излучения, и в последующие годы открывается множество других подобных источников. В 1969 г., например, был запущен спутник Земли, который был специально предназначен для обнаружения рентгеновских источников. Он был запущен с побережья Кении в пятую годовщину провозглашения ее независимости и был назван «Ухуру», что на языке суахили означает «свобода». Спутник зарегистрировал 161 источник рентгеновского излучения, половина — за пределами нашей Галактики.

Это было одно из открытий, благодаря которым в 60-х годах астрономы начали осознавать, что Вселенная гораздо более неспокойное место, чем было принято думать. Кажущееся спокойствие и безмятежность ночного неба были обманчивы.

Одним из источников рентгеновского излучения в небе была Крабовидная туманность.

Для астрономов это не явилось неожиданностью. Если бы им пришлось выбирать точку неба, в которой можно обнаружить рентгеновское излучение, все до одного, несомненно, выбрали бы Крабовидную туманность. Во-первых, это был явный результат взрыва сверхновой — самого катастрофического события, могущего произойти со звездой. Во-вторых, взрыв этот был относительно близким и относительно недавним. Кроме того, огромное возмущение и быстрое расширение туманности были явным предвестником тех высоких температур, которые могли порождать рентгеновские лучи.

В сущности, там были два возможных источника рентгеновского излучения. Одним был быстро расширяющийся объем газа и пыли, составляющий собственно туманность, другим — маленькая горячая звезда в центре, остаток взрыва, который мог быть нейтронной звездой.

В 1964 г. Луна в своем движении по небу должна была пересечь Крабовидную туманность. Мало-помалу она должна была надвигаться на туманность.

Если рентгеновские лучи брали свое начало от горячих вихревых газов самой туманности, то по мере ее затмения Луной интенсивность их излучения снижалась бы постепенно, шаг за шагом. Если рентгеновские лучи в целом исходили из центра предполагаемой нейтронной звезды, то интенсивность излучения должна была ослабевать по мере того, как Луна заслоняла собой туманность, затем резко упасть в момент, когда она скроет маленькую звезду, и продолжить медленное ослабление по мере затмения остальной части туманности.

Поделиться с друзьями: