Я познаю мир. Биология
Шрифт:
Средство общения
Электрические органы слабоэлектрических рыб имеют еще одно важное предназначение: они используются для общения. Электрический язык годится для любого диалога. С помощью электросигналов рыбы способны передавать друг другу сложную информацию. Слаженные действия большой стайки рыбьей мелюзги можно подсмотреть в любом водоеме. Сигнал на одновременный поворот всей стаи, видимо, дается с помощью электрических команд.
Электрические разряды используются рыбами для широковещательных объявлений своим соплеменникам о том, что участок занят и хозяин будет защищать свои владения. Ученые убедились в этом, записав разряды, производимые
Электрические разряды генерируют не только те рыбы, у которых имеются для этого специальные электрические органы. Слабые высокочастотные разряды возникают у любых существ, совершающих быстрые энергичные движения: броски, развороты, открывание и захлопывание рта. Они возникают в работающих мышцах.
Мышцы хищных рыб, вроде щук или сомов, генерируют электроразряды длинными сериями, а у рыб, питающихся мелкими донными организмами и илом, при движении возникают короткие, серии или одиночные разряды. По электрическим разрядам этих рыб можно догадаться, опасное ли существо появилось в зоне восприятия электрорецепторов или нет.
image l:href="#"
Обыкновенный сом
Когда рыбы плывут дружной компанией, согласовывая свои движения, разряды их мышц суммируются и вокруг стаи формируется общее электрическое поле.
Автопилот
Электрорецепторы слабоэлектрических рыб могут заменить им компас. Зоологи давно задумывались над тем, как находят дорогу птицы, морские черепахи и рыбы, ежегодно совершающие дальние миграции. По этому во–, просу было высказано множество предположений. Некоторые ученые считают, что птицы и рыбы рождаются с заложенной в мозг географической картой Земли. Другие думают, что у них развито магнитное чувство, иными словами, имеется биологический компас. Ничего невероятного в подобных предположениях нет, однако точные доказательства (или опровержения) этих гипотез еще впереди. А вот изучение электрорецепции позволило, во всяком случае для рыб, доказать их способность ориентироваться по магнитному полю Земли.
Обитающий в Средней Азии туркестанский сомик, или звездочёт, лежащий на дне водоема, не ощущает магнитного поля Земли. Но стоит ему отправиться в путь, все меняется. Из курса физики вы знаете (или узнаете чуть позже), что электрический ток создает магнитное поле, а магнитное поле, в свою очередь, способно вызывать возникновение электрического тока. Он возникает в любых замкнутых проводниках при пересечении ими магнитного поля. На этом основано устройство любых электрогенераторов.
Когда рыба движется в магнитном поле, в ее теле возникают концентрические индукционные токи. На них и у морских, и у пресноводных рыб реагируют ампулы Лоренцини, расположенные вертикально по отношению к поверхности тела рыбы. Следовательно, рыбы чувствительны не к самому магнитному полю, а лишь к его изменению. Величина индукционных токов зависит от того, под каким углом и с какой скоростью пересекаются силовые линии магнитного поля, что и позволяет рыбе прокладывать свой маршрут в океане с не меньшей точностью, чем мы это делаем по компасу.
image l:href="#"
Туркестанский сомик (Glyptosternum reticulatum)
Электрические рыбы открыты
сравнительно недавно, а изучение их начато лишь в наши дни. Можно с уверенностью сказать, что в ближайшие годы ученые смогут узнать много нового о работе электрических органов и о поведении электрических рыб.Механика живого
image l:href="#"
Подвижность присуща многим живым организмам, причем не только животным, но и растениям, а также некоторым грибам. Высшие животные приобрели «моторы» – гладкие и поперечнополосатые мышцы, позволяющие им приводить в движение части своего тела и перемещаться в пространстве: бегать, прыгать, плавать, летать. Давайте познакомимся с некоторыми проблемами и ограничениями в работе двигательных органов.
Подкожные резинки
Резина – довольно обыденный материал. Чего только из нее не делают! Главная ценность резины в том, что она способна сильно растягиваться и при этом не портиться, а когда мы прекращаем ее растягивать, восстанавливает свою прежнюю длину.
Свойства резины общеизвестны, но нас интересуют биологические объекты. Давайте познакомимся с работой скелетных мышц. Они тоже способны растягиваться и сокращаться, правда, в отличие от резины, растягиваются они под действием собственной тяжести, а сокращаясь, способны производить значительную работу.
Скелетные мышцы состоят из многоядерных клеток, имеющих вид волокон. Волокна длинные, до 40 мм длиной. Каждое волокно состоит из чередующихся светлых и темных дисков, как ручки ножей, набранные из пластинок разноцветной пластмассы. Темный диск и две половинки светлых дисков, прилегающих к нему слева и справа, образуют саркомер – рабочий элемент мышечных волокон.
image l:href="#"
Схема строения поперечнополосатой мышечной клетки: 1 – саркомер; 2 – миофибрилла актина; 3 – миофибрилла миозина; 4 – головки миозина
Мышечные волокна собраны в пучки таким образом, что все темные диски каждого волокна располагаются точно под темными дисками других волокон, образуя темную полосу, а светлые диски таким же образом формируют светлые полосы. Это придает мышце сходство с зеброй и послужило причиной того, что скелетные мышцы называют поперечнополосатыми .
В каждой мышечной клетке находятся многочисленные тяжи – миофибриллы, производящие сокращение мышц. Они бывают двух типов. Толстые нити диаметром 15 нанометров (нм) состоят в основном из белка миозина, а тонкие имеют в диаметре всего 7 нм и в состав вещества, из которого они состоят, входит белок актин. Тонкие нити проходят только по светлым участкам саркомера, а в средней части темной полосы проходят только толстые нити. Лишь в самых темных боковых участках темных полос находятся и толстые, и тонкие нити. Причем каждую толстую нить окружают 6 тонких.
Молекулы миозина, как мы уже сказали, составляют основу вещества толстых нитей. Каждая молекула этого белка имеет массивную головку, торчащую наружу, и длинный хвост, вплетенный в нить. В спокойном состоянии, когда мышца не занята работой, головки миозина никакой активности не проявляют. Когда же нерв приносит распоряжение мозга сократиться, они прикрепляются к соседним тонким актиновым нитям и наклоняются. При этом головки поворачиваются примерно на 45° и тянут за собой тонкую нить, которая скользит вдоль толстой нити по направлению к центру саркомера. Здесь тонкие нити встречаются и могут даже заходить друг за друга. Это приводит к сокращению саркомера до 28%, но сами нити при этом не укорачиваются.