Чтение онлайн

ЖАНРЫ

Я познаю мир. Тайны человека
Шрифт:

Выяснение причин возникновения иммунитета. открывали широкие возможности борьбы с самыми различными ядами, в первую очередь – с микробными. Быстро были созданы столбнячный, дизентерийный, стафилококковый, бутулинический анатоксины, спасшие миллионы людей от серьезных инфекционных болезней.

Один из видов национального индийского искусства – заклинательство змей. Без заклинателей в Индии не обходится ни один общенародный праздник. Европейцев всегда удивляло фамильярное обращение факиров со своими смертельно опасными подопечными. Почему они не боятся укуса ядовитых змей? Оказывается, постоянное общение с ними приводит к тому, что микроскопические порции яда попадают в организм заклинателей и у них постепенно развивается стойкий иммунитет по отношению к смертельным дозам змеиного яда.

Успехи в выработке иммунитета к микробным ядам натолкнул ученых на мысль о возможности найти способ предохранения от

последствий укусов змей. В настоящее время созданы анатоксины яда всех широко распространенных змей, а также некоторых растительных ядов.

Невидимое оружие

Открытие И.И. Мечниковым фагоцитов, маленьких защитников организма, стало серьезным этапом в изучении защитных сил организма. Однако выяснилось, что количество фагоцитов в крови привитых животных не увеличивается. Это обстоятельство вызвало подозрение, что фагоциты не всегда имеют отношение к иммунитету, что позже и подтвердилось. Оказалось, что сыворотка, то есть жидкая часть крови, очищенная от красных, белых и других клеток крови, взятая у привитых животных, прекрасно убивает возбудителей болезни.

Эти наблюдения свидетельствовали о том, что после прививки, после возникновения иммунитета, в крови привитого животного появляются какие–то вещества, способные уничтожать микробов, против которых была сделана прививка. Эти защитные вещества получили название антител.

Изун.ение антимикробных свойств сыворотки крови особенно тщательно проводил немецкий бактериолог Эмиль Адольф Беринг. Проведя специальные исследования, он убедился, что с помощью сыворотки можно вылечить заболевшего соответствующей болезнью животное. Беринг убедился в этом на примере столбняка. Он получил от кроликов антистолбнячную сыворотку и с ее помощью спас от смерти крыс, специально зараженных столбняком. Позже он получил антидифтерийную сыворотку. Такая сыворотка, полученная из крови привитых дифтерийным анатоксином лошадей, до сих пор является основным лекарством при лечении больных дифтерией. Вот как важно оказалось научиться приготовлять микробные анатоксины. Лекарство, убивающее возбудителя болезни, не могло бы дать такого лечебного эффекта, так как у заболевшего человека в крови уже много микробного токсина.

Производство антимикробных и антитоксических сывороток началось в 1894 году. С этого момента стало не обязательно вырабатывать у человека иммунитет поголовно ко всем опасным инфекционным болезням, тем более к змеиным и другим ядам. Столбнячный микроб, например, способен вызвать болезнь, если он проник в ранку, хотя и маленькую, но глубокую, например, когда человек наступит на ржавый гвоздь. Зачем же прививать человека от столбняка, если он ездит обычно в карете, а ходит преимущественно по паркету.

Обнаружение веществ–защитников – антител – не поколебало веры ученых в важную роль фагоцитов в борьбе с опасными микроорганизмами. Сегодня понятно, что фагоциты и антитела действуют совместно. Подтверждением важности изучения обоих механизмов борьбы с инфекционным началом послужило одновременное присуждение Нобелевской премии И.И. Мечникову за открытие фагоцитов и П. Эрлиху за открытие антимикробных свойств сыворотки крови.

Иногда задают вопрос, какой компонент иммунитета важнее: фагоциты или антитела? Пожалуй, важнее фагоциты, так как именно они и вырабатывают антитела. Кроме того, фагоциты – основа особого иммунитета, мешающего приживлению чужеродных органов и тканей. Если кусочек кожи от одного человека пересадить (подшить) другому, он быстро прирастет, и уже через неделю можно удалять удерживающие его нитки. Кажется, пересадка прошла успешно, но еще через 10 дней этот кусочек кожи засохнет и отвалится. Это результат иммунитета. Организм обнаружил чужеродную ткань, чужеродные белки, и принял меры, чтобы от них избавиться. Это входит в обязанность особых клеток – иммунных лимфоцитов. Они спешат к месту, где находится пересаженная кожа, вплотную приближаются к чужеродным клеткам и впрыскивают в них вещество ПАР (продукт антигенного, то есть чужеродного, распознавания).

Откуда берутся фагоциты? Они способны размножаться простым делением. Кроме того, их массовое производство происходит в селезенке и в многочисленных лимфатических узлах. Есть у человека и у позвоночных животных специальный орган, играющий важную роль в формировании механизмов иммунитета. Это вилочковая железа, или тимус. Находится она у человека между трахеей и грудиной. У новорожденного ребенка она весит всего 10–15 граммов. Но у новорожденных детей все крохотное. В сравнении с размерами других органов вилочковая железа – солидный орган, ведь даже сердце, новорожденных весит не больше 25 граммов. В 9–12 лет эта железа достигает максимального развития, увеличиваясь до 30–40 граммов, после чего ее рост прекращается, и в 24.–27 лет она начинает атрофироваться, уменьшаться, и на ее меете образуется жировая ткань. Насколько важна эта железа, показывают результаты следующих опытов. Если новорожденным мышам в первые 3 дня их жизни удалить вилочковую железу, у них не разовьется лимфатическая система, в крови будет мало лимфоцитов, и эти животные будут неспособны вырабатывать иммунитет, поэтому чаще всего погибнут еще молодыми. Единственное положительное качество, которое приобретают эти мыши, – неспособность отторгать пересаженные им органы. Это тоже результат

нарушения иммунных реакций.

Интересно, что такой эффект получался лишь при удалении вилочковой железы в самые первые дни жизни. Удаление ее чуть позже особого вреда организму не наносило. Вот какой удивительный орган этот тимус. Всего за несколько дней он создает условия для нормального развития иммунитета, а затем первым из органов человеческого тела уходит на покой.

А. Флеминг: антибиотики

Из чего только не приготовляли в древности и не приготовляют сейчас лекарства для лечения человеческих болезней! Одно лишь перечисление весьма странных веществ и материалов, используемых для их изготовления, вряд ли уместится в толстой книге. Не будем пытаться сделать даже краткий их перечень. Скажем лишь, что весьма странные вещества использовались, а некоторые и поныне используются не только шаманами, но и учеными, в том числе и в нашей стране.

Так, С.П. Боткин, светило отечественной медицины, пытался создать лекарство из обычных тараканов! В Армении во времена средневековья помет разных животных входил в состав более ста лекарств, а уринотерапия, лечение с помощью человеческой мочи, сегодня широко пропагандируется по всей России. Неудивительно, что попытки изготовить лекарство из плесени ни у кого не вызвали отвращения.

Стафилококки – обычные, но опасные микробы. Они чаще других вызывают нагноение при травмах и хирургических операциях. Вот почему эти микробы изучались и продолжают изучаться во многих лабораториях мира.

Когда ученые в своих лабораториях выращивают различные микробы, им приходится тщательно соблюдать чистоту. Малейшая оплошность, и на поверхности питательной среды вместо высеянного микроба разрастаются колонии совсем других микроорганизмов. Самыми частыми вредителями в микробиологических лабораториях бывают плесени – особый вид микроскопических грибков.

Микробы чаще всего выращиваются на поверхности застывшего желе в мелких и плоских стеклянных чашках – чашках Петри. Когда в чашки, засеянные стафилококком, проникает плесень, они не зарастают ею, как огород сорняками. Плесень, окружая круглые клумбы – колонии стафилококка, растворяет их, и на этом месте остаются небольшие проплешины, покрытые пленочкой жидкости. Это обычная картина, с которой любой микробиолог сталкивался не раз. Однако до поры до времени никому из них не приходило в голову разобраться в том, что происходит в чашках Петри. Их просто выбрасывали. Лишь в 1920 году этой плесенью–вредительницей заинтересовался английский микробиолог А. Флеминг. Он стал специально выращивать ее и убедился, что она способна погубить многие микроорганизмы, правда, далеко не все. Среди тех микробов, которых плесень уничтожала, были стафилококки, стрептококки, дифтерийная палочка и такой опасный враг, как бацилла сибирской язвы. Флеминг понял, что из плесени могло бы получиться отличное лекарство для борьбы со многими инфекционными болезнями. Однако для этого нужно было научиться извлекать из нее именно то вещество, которое убивает микробов, и найти способ очищения его от любых примесей, так как плесень вырабатывает и другие ядовитые вещества, смертельно опасные даже для человека.

Плесень, заинтересовавшая Флеминга, была прекрасно известна ботаникам. Она называется пенициллиум нотатум: Чтобы создать лекарство, Флеминг обращался за помощью и к химикам, и к фармацевтам, и к ботаникам. Шли годы, но добиться положительных результатов не удавалось. Только в преддверии Второй мировой войны у Флеминга появились талантливые помощники – и был создан всем сегодня известный пенициллин.

Лиха беда начало. Вслед за пенициллином ученые создали стрептомицин – первое действенное лекарство против туберкулеза. Оно позволило на многие годы избавить человечество от этой страшной болезни. Затем были созданы синтомицин и ауреомицин – средства против брюшного и сыпного тифа. Ученые поняли, что у каждого микроорганизма есть свои, обычно многочисленные враги из числа таких же микроорганизмов. Поэтому с момента создания пенициллина поиски новых врагов опасных для человека возбудителей болезней ведутся со все возрастающей интенсивностью. Этот тип лекарств, действующий не на человека, а убивающий проникших в наш организм микробов, медики назвали антибиотиками. "Биос" по–гречески "жизнь", а "анти" – приставка, означающая "против". Ежегодно создают десятки антибиотиков. Потребность в новых лекарствах объясняется тем, что микробы размножаются с космической скоростью. Это дает им возможность быстро изменяться, в результате чего бывшие яды перестают на них действовать. Например, современные стафилококки давно вышли из–под контроля пенициллина и практически его не боятся. Туберкулезная палочка перестала бояться стрептомицина, и туберкулез снова пошел в наступление.

Среди микроорганизмов много наших серьезных врагов. Но есть и друзья. Их тоже не мало. Помощью многих из них мы пользуемся постоянно. Они живут в нашем кишечнике, не позволяя размножаться там гнилостным бактериям, и даже помогают переваривать пищу. К помощи других мы прибегаем, когда у нас возникают инфекционные болезни. На Земле существует несметное количество видов микроорганизмов, и можно с уверенностью утверждать, что некоторые из них смогут стать нашими защитниками и друзьями.

Поделиться с друзьями: