Яды и противоядия
Шрифт:
Далее надо назвать современника А. А. Иовского, видного фармаколога и токсиколога Александра Петровича Нелюбина (1785–1858 гг.) — многолетнего руководителя кафедры фармации Медико-хирургической академии. А. П. Нелюбин был автором широко известного в то время двухтомного руководства по судебно-медицинской химии и общей токсикологии (1851 г.). Особый интерес представляют имеющиеся в этом руководстве сведения по оказанию первой помощи и лечению отравленных. Автор точно и кратко излагает соответствующие мероприятия:
1) удалить как можно поспешнее яд из желудка,
2) разложить или нейтрализовать яд с помощью химических средств,
3) лечить болезнь, возникшую от вредного действия яда. [56]
Надо отметить, что уже тогда А. П. Нелюбин подчеркивал особую значимость применения при отравлениях различных способов искусственного дыхания, а также предписывал использовать «нервные, оживляющие, возбуждающие и аналептические средства». И в дальнейшем ученые России обращались к актуальным токсикологическим вопросам и много ценного внесли в дело создания эффективных противоядий. Например, ученик А. П. Нелюбина профессор Ю. К. Трапп (1814–1908 гг.) был автором книги под примечательным названием: «Руководство для первых пособий при отравлении и для химического исследования ядов» (СПб., 1863). Другой крупный отечественный токсиколог профессор Петербургской медико-хирургической академии Е. В. Пеликан (1824–1884 гг.) в одной из своих монографий писал: «Действие ядов определяется их химическим составом или свойством, числом
56
Цит. по: Арбузов С. Я. Пробуждающее и антинаркотическое действие стимуляторов нервной системы. Л.: Медгиз, 1960.
57
Пеликан Е. В. Опыт приложения современных физико-химических исследований к учению о ядах. СПб., 1854, с. 18.
Видную роль в создании современных противоядий сыграли советские ученые. Значительный вклад в этом направлении был сделан известным фармакологом и токсикологом, заслуженным деятелем науки профессором Н. В. Лазаревым (1895–1974 гг.). На его произведениях, касающихся основных теоретических и практических сторон лекарственного воздействия на токсический процесс, формировалось не одно поколение советских токсикологов. Многие ученики и сотрудники Н. В. Лазарева постоянно обращались к «антидотным» вопросам и немало сделали для разработки ряда эффективных противоядий. Большое место проблема антидотов занимала в научной деятельности крупного ученого — академика АМН СССР В. М. Карасика (1894–1964 гг.), ряд трудов которого специально был посвящен разработке основных вопросов теории антидотов, а также историческим аспектам этой проблемы. Большие заслуги в создании современных противоядий принадлежат киевской школе токсикологов во главе с академиком АМН СССР А. И. Черкесом и профессором Н. В. Луганским. Надо особо отметить роль этих исследователей во внедрении действенных противоядий в практику лечения и профилактики ряда профессиональных интоксикаций. При этом проявилось плодотворное содружество токсикологов и химиков-синтетиков. Значительно продвинули вперед токсикологическую науку труды коллектива ученых под руководством академика АМН СССР С. Н. Голикова. Их работа ознаменовалась серьезными достижениями в изучении биохимической сущности действия многих ядов и решении актуальных задач лечения отравлений, в том числе антидотного. Разработке многих теоретических и практических проблем современной токсикологии посвящены исследования советских ученых: Ж. И. Абрамовой, И. Д. Гадаскиной, Ю. С. Кагана, С. И. Локтионова, И. Г. Мизюковой, М. Я. Михельсона, В. В. Петрунькина, В. И. Розенгарта, Н. В. Саватеева, И. В. Санецкого, Г. А. Степанского, Ю. Н. Стройкова, Л. А. Тиунова, В. А. Филова и др. Совместно со своими сотрудниками они внесли весомый вклад в изучение молекулярных механизмов и количественных закономерностей токсических процессов и создание современных антидотов. [58]
58
См. список литературы в конце книги.
Яд и противоядие — фармакологические антагонисты
Совершенно очевидно, что прямое или опосредованное взаимодействие противоядия и токсичного вещества в организме должно носить антагонистический характер. Точнее говоря, антидотный эффект в его фармакологическом значении является результатом такого совместного действия веществ, которое выражается в полном или частичном ослаблении биологической активности одного вещества другим. В последнее время в области изучения интимных механизмов антагонизма различных веществ достигнуты определенные успехи. Мы рассмотрим некоторые основные положения теории антагонистических отношений биологически активных химических агентов в той мере, в какой это необходимо для понимания молекулярных основ действия антидотов. [59]
59
Более глубоко интересующимся этой проблемой может быть рекомендована работа: Комиссаров И. В. Элементы теории рецепторов в молекулярной фармакологии. М.: Медицина, 1969.
Вначале надо отметить, что термин «антагонизм» в токсикологическом смысле имеет собирательное значение. Во-первых, взаимоотношения яда и антидота могут основываться на физическом, точнее — физико-химическом, антагонизме, который проявляется главным образом адсорбцией ядов такими веществами, как например активированный уголь. Будучи фармакологически инертными препаратами, сорбентные антидоты реализуют свое действие в основном еще до всасывания ядов в кровь за счет неспецифической фиксации их молекул. Тем самым ослабляется токсический эффект из-за уменьшения концентрации молекул яда в биофазе — среде, непосредственно окружающей биоструктуры. Подобным образом действуют окись цинка, белая глина (каолин), [60] крахмальный клейстер, а также ионообменные смолы — катиониты и аниониты, используемые, например, при отравлениях солями тяжелых металлов, алкалоидами, хлорированными углеводородами. Защитная мощность сорбентов подчас весьма значительна. Например, 1 г активированного угля, принятого внутрь, может связать несколько сотен миллиграммов сулемы или стрихнина. Однако существуют и такие адсорбенты, которые, способны связывать свободно циркулирующие в кровеносном русле атомы тяжелых металлов, микробные токсины, медикаментозные вещества. Одно из таких противоядий — поливинилпирролидон, точнее, его полимерные фракции с молекулярной массой около 12000 следующего строения:
60
Силикат алюминия с небольшой примесью силикатов кальция и магния.
Оказалось (и это особенно ценно), что данный препарат не только сорбирует вещества, растворенные в крови, но и освобождает белки плазмы и даже клеток от фиксированных ими частиц ядовитых соединений. [61] Практическое применение нашел водно-солевой раствор поливинилпир-ролидона под названием гемодез.
Далее, яд и антидот могут вступать в химическое взаимодействие, и тогда принято говорить о химическом антагонизме. Следствием этого типа антагонизма являются реакции образования нерастворимых и, как правило, нетоксичных (или малотоксичных) соединений, как это имеет место при упоминавшихся реакциях взаимодействия глюкозы с цианидами или двууглекислой соды с кислотами. Химический антагонизм веществ сопровождается также взаимным подавлением их диссоциации или растворимости. При этом обезвреживание ядов вследствие химической трансформации или связывания их молекул может осуществляться как до их проникновения в кровеносное русло, так и при их циркуляции в нем или даже после фиксации биологической структурой. О нескольких фармакологических агентах, нейтрализующих токсичные вещества за счет простых реакций замещения и двойного обмена, уже шла речь в связи с историей противоядий. Вот еще иллюстрация
данного аптидотного механизма:61
Кочеткова В. А. Влияние поливинилпирролидона на токсические свойства стрептомицина и мономицина. — Антибиотики, 1970, № 1, с. 71–76.
AgNO3+NaCl->NaNO3+AgClV.
Из этой реакции следует, что поваренная соль является противоядием при интоксикации (передозировке) нитратом серебра. [62] Таков же принципиальный механизм действия и комбинированных препаратов, например антидота против мышьяка (antidotum arsenici), содержащего сульфат железа и окись магния. Сюда должны быть причислены дитиоловые противоядия и комплексоны, антидотное действие которых основано также на реакциях замещения и двойного обмена и о которых речь подробно пойдет в дальнейшем. В данной подгруппе антидотов имеются вещества, химически связывающие целые молекулы или биологически активные радикалы ядов с превращением в безвредные недиссоциирующие соединения, а также необратимо трансформирующие яды с образованием нетоксичных или значительно менее токсичных соединений. Это, в частности, реализуется посредством гидролитических и окислительно-восстановительных реакций. Так, многие ФОС быстро гидролизуются в щелочной среде:
62
Нитрат серебра (ляписи другие препараты серебра (колларгол, протарголиспользуются как антимикробные, вяжущие, а в более высоких концентрациях — прижигающие средства.
Вот почему при попадании ФОС на кожу и слизистые оболочки в качестве противоядий рекомендуют использовать растворы щелочей.
Определенное значение имеет обезвреживание яда за счет реакций окисления, что можно видеть на примере взаимодействия гидразина с перекисью водорода:
N2H2+2Н2O2– >N2+4Н2O.
Однако в присутствии уксусной кислоты перекись водорода действует как восстановитель, что используется при отравлениях перманганатом калия: [63]
63
Данная реакция известна уже более 115 лет. Для промывания желудка при отравлении КМnО4 рекомендуется использовать смесь, состоящую из 2 л теплой воды, полстакана 3%-ного раствора перекиси водорода и стакана 3%-ной уксусной кислоты (Попов Н. Д. Лечение острых отравлений и ожогов, вызванных марганцовокислым калием, — Клин. мед., 1959, № 8, с. 97–101).
2КМnO4+5Н2O2+6СН3CООН->2Мn(СН3СОО)2+2СН3СООК+3Н2О+5O.
В то же время КМnO4 применяют при отравлении различными органическими соединениями для окисления их в менее токсичные вещества (например, морфин окисляется в малотоксичный оксиморфин). К разбираемым антидотам надо отнести и органические кислоты (лимонную, уксусную, виннокаменную и др.), которые в малых концентрациях целесообразно применять при отравлениях щелочами. В свою очередь, и щелочные реагенты — жженая магнезия, углекислые соли, в частности мел (СаСО3), — рекомендуются как противоядия, нейтрализующие в организме кислоты. Можно назвать еще несколько практически значимых химических противоядий, превращающих яды в малорастворимые соединения: танин, [64] связывающий алкалоиды и некоторые соли (например, цинка) с образованием нетоксичных таннатов; сульфат меди, осаждающий фосфор; хлорид кальция, переводящий растворимые соли фтора в осадок. Учитывая принципиальное сходство механизма действия сорбентных и химических противоядий (непосредственное взаимодействие с ядом), целесообразно их рассматривать как одну группу, объединив названием антидотыпрямого действия.
64
Танин входит в состав универсального противоядия под названием ТУМ, которое кроме него включает активированный уголь и жженую магнезию (MgO). Использование этой смеси основано, следовательно, на сочетании химического и адсорбционного обезвреживания ядов.
И наконец, принципиально иной и значительно более сложный тип антагонизма яда и антидота наблюдается тогда, когда они взаимодействуют не прямо, а косвенно, через различные биоструктуры, оказывая на них стимулирующее или угнетающее действие. Такой антагонизм называется функциональным. Прежде чем раскрыть сущность данного явления, необходимо охарактеризовать те элементы клеток, с которыми взаимодействуют яды и антидоты вследствие своей структурной специфичности. В этой связи важнейшим является понятие «клеточные рецепторы» или просто «рецепторы». В молекулярной токсикологии ими принято называть компоненты белковых, мукополисахаридных или липидных молекул, которые расположены внутри или на поверхности клеток и которые способны взаимодействовать с токсичным агентом или антидотом, вызывая специфический эффект. Часто понятие «рецептор» отождествляется с активными центрами ферментов, т. е. функциональными группировками атомов, непосредственно реагирующими с молекулами биологически активных веществ. [65] Следовательно, токсикологическое (фармакологическое) значение слова «рецептор» отличается от физиологического, которое, как известно, определяет рецепторы как составной элемент нервной системы, воспринимающий раздражение.
65
Термин «рецептор» впервые ввел в науку выдающийся ученый Пауль Эрлих в конце XIX в., когда он в ходе своих классических исследований по химиотерапии и иммунохимии пришел к выводу, что в основе механизма действия лекарственных веществ лежит их соединение с химически определенными участками биомолекул. Формулируя понятие рецептора, П. Эрлих писал: «Это активная группировка в молекуле протоплазмы, в которой присоединяется введенная извне чужеродная группа» (цит. по: Альберт Э. Избирательная токсичность/ Пер. с англ. М.: Мир, 1971, с. 68). Как видим, это определение сущности понятия «рецептор» мало или почти не отличается от современного.
Как подчеркнул профессор И. В. Комиссаров, для понимания молекулярного механизма фармакологического эффекта необходимо разграничивать понятия «рецептор», «рецепторная биохимическая структура» и «реактивная биохимическая система», имея в виду, что каждое предыдущее относится к последующему как часть к целому: если рецептор — это субмолекулярное образование, то структура — понятие молекулярного порядка (рецепторный белок), а реактивная биохимическая система включает ряд белковых и небелковых молекул, через которые реализуются взаимосвязанные ферментно-химические процессы. Не касаясь различных сложных, подчас противоречивых и недостаточно изученных сторон существа функционального антагонизма комбинирующихся в организме веществ, отметим зависимость конечного эффекта от соотношения доз яда и антидота, а также от числа и функционального состояния тех рецепторов (структур), которые являются объектом их воздействия. [66]
66
Здесь мы не останавливаемся на количественных сторонах этой зависимости.