Юный техник, 2000 № 09
Шрифт:
ДОБРАЛИСЬ И ДО ЗАВТРАКОВ. Наконец-то свершилось! Сотрудники Института питания РАМН совместно со специалистами ООО «Алазани-Эдем» добрались до научного составления рационов школьного питания. Теперь-то уж ученые обеспечат «поступление в растущий детский организм необходимого для нормального развития количества калорий и незаменимых биологических веществ». Хорошо бы. чтобы завтраки были еще и вкусными. Впрочем, рационы имеют 25 вариантов, так что выбрать вроде есть из чего…
ЛЕГКИЙ, КАК… КАМЕНЬ?! Теперь из базальта научились делать даже вату. Камень расплавляют токами высокой частоты, а потом пропускают через расплавленную
МИКРОБЫ ИЗ КОСМОСА оказались вполне полезны на Земле. К такому выводу пришли доктор биологических наук И. Улезло и его коллеги из Института биохимии имени А.Н.Баха и биофака МГУ. Им пришло в голову проанализировать микробный состав конденсата, который образуется на панелях приборов орбитальной станции «Мир» в результате жизнедеятельности экипажа. В итоге им удалось обнаружить бактерию, которая способна усваивать таков токсичное для человека вещество, как этиленгликоль. Тот самый, что входит в состав антифризов, тормозных жидкостей…
Проведя опыты с бактериями-«космонавтами», исследователи обнаружили, что они обладают удивительной способностью поглощать зловредный этиленгликоль, перерабатывая его в безвредные вещества.
Как именно эти бактерии оказались на борту космической станции, выяснить пока не удалось. Однако ученые полагают, что если поискать, то там отыщется и еще парочка-другая полезных микроорганизмов.
СЫРЬЕ — МОРСКАЯ ВОДА. Технологию переработки соленых вод разработали специалисты Института геохимии и аналитической химии имени В.И.Вернадского, используя новые безреагентные сорбционные, электросорбционные и мембранные фильтры. Из морской воды удается получить на выходе кристально чистую пресную воду и сами соли, которые могут быть использованы в качестве сырья для химической промышленности.
На ТЭЦ во Владивостоке построена первая ступень опытной установки, которая дает 240 куб. м пресной воды в сутки, а кроме того — 300 т карбоната магния высокой чистоты в год. И уже разработана техническая документация на строительство в 10 раз более производительной установки. Испытания показали, что отечественная технология примерно на 20–30 % превосходит по производительности аналогичную разработку Калифорнтского университета в США и обходится гораздо дешевле.
ОГНЕЗАЩИТНЫЕ ПОКРЫТИЯ для металлических и деревянных поверхностей изготавливает ЗАО «Научно-производственная фирма «Стройпрогресс — Новый век». Они созданы на основе базальта, обладают хорошими теплоизоляционными свойствами и способны эффективно противостоять огню в течение 30–60 минут. Покрытия выпускаются разных видов в зависимости от материалов. на которые наносятся, и уже успешно себя зарекомендовали на станциях метрополитена в Москве, Минске, Екатеринбурге… Та же фирма выпускает также и теплоизоляционные маты, плиты на основе базальтовых волокон.
УДИВИТЕЛЬНО, НО ФАКТ!
Аплодисменты как мера хаоса…
Представьте себя в концертном зале. Напряженная тишина. И вдруг она взрывается шквалом аплодисментов после выступления популярного певца или музыканта. Казалось бы, что в том удивительного? Для нас с вами ничего. Но, оказывается, физик с воображением может уловить в этом некую аналогию с… Большим взрывом!
Группа исследователей из США, Венгрии и Румынии к такому заключению и пришла, опубликовав недавно обстоятельную статью во всемирно известном научном
журнале «Нейчур».Итак, грянул шквал аплодисментов. Что происходит дальше?
Оказывается, это во многом зависит от того, где, в какой стране проходит концерт. Индивидуалисты американцы похлопают еще немного да и разойдутся. А вот европейцы, в особенности жители Восточной Европы, могут организовать и овацию. Это когда аплодирующие начинают как бы самоорганизовываться и принимаются хлопать в такт, синхронно.
Почему так происходит? Попытка проанализировать это явление привела к довольно любопытным результатам. Прежде всего оказалось, что математически модель синхронизации аплодисментов вписывается в так называемую модель спаренных осцилляторов. При этом исследователи выделили в аплодисментах две фазы. Первая, быстрая, наступает тотчас после окончания выступления артиста или даже с последними тактами музыкального произведения. Затем наступает очередь второй фазы. Частота хлопков снижается примерно наполовину, зато они приобретают строгую синхронность и могут продолжаться куда дольше первоначальных беспорядочных всплесков.
«В первой фазе каждый индивидуум ведет себя сообразно своему темпераменту, настроению и привычкам, — отмечают ученые. — А вот во второй фазе вариации ритмов практически равны нулю».
Когда к этому явлению применили математическую модель синхронизации, разработанную японским физиком Юшики Куромото, то она показала: если разброс ритмов весьма широк, как это бывает при быстрых аплодисментах, никакая синхронизация невозможна. Но стоит лишь темпу снизится, как в нем выделяется ведущая волна. Более того, в этих условиях синхронизация становится практически неизбежной.
«Возможно, мы имеем перед собой наиболее наглядный пример синхронизации ритмов в природе, — замечает по этому поводу преподаватель прикладной математики в Корнельском университете, профессор Стивен Строгат. — Но вообще синхронизация в природе — далеко не редкость. Первое, что мне приходит в голову, — мысль об организованной работе многих тысяч клеток пейсмейкеров в сердце, каждая из которых порождает свой электрический разряд».
Более того, синхронизация вообще присуща природе, и не только живой. Например, голландский математик, механик и астроном Христиан Гюйгенс, живший в XVII веке, отмечал, что колебания маятников в нескольких часах, висящих в одной комнате, довольно скоро приходят к единому ритму. Сам он, кстати изобретший маятниковые часы, объяснил их загадочное поведение тем обстоятельством, что вибрации передаются по стенам помещения и в конце концов приводят маятники в резонанс.
Но может ли сам собой навестись порядок в комнате подростка, где царит известный беспорядок? Вы скажете, что навряд ли, если, конечно, в ситуацию не вмешается некая высшая сила в лице, например, мамы, которая произведет генеральную уборку или заставит сделать то же своего сына.
О том же вроде говорит и второй закон термодинамики, который в общем случае гласит, что энтропия, то есть мера беспорядка, может только увеличиваться, но не уменьшаться.
И тем не менее, недавно ученые всерьез задумались о том, как при некоторых условиях хаос все-таки можно повернуть вспять…
«Вспомните хотя бы, как образовалась наша Вселенная, — пишут авторы статьи. — После Большого взрыва в ней царил настоящий хаос. Однако со временем все самоорганизовалось или структурировалось: из беспорядочного облака частиц и излучений образовалась материя, затем из нее конденсировались первые галактики, звездные и планетные системы. Наконец, образовались сами планеты, на которых, в свою очередь, зародилась высшая форма самоорганизации — жизнь и даже разум. (По крайней мере, хотя бы один наглядный пример тому мы имеем перед глазами.)».