Юный техник, 2000 № 11
Шрифт:
Рисунок профессора Г.И.Покровского.
Первая паровая турбина была создана в I веке до н. э. Героном Александрийским. Она работала за счет силы реакции пара, вытекавшего из трубок. Есть легенда о том, что на ее основе Герон построил действующую установку для подъема дров на вершину Фаросского маяка. Однако после гибели античной цивилизации турбину Герона (эолипил) долгое
В эпоху Возрождения потребность в энергии стала расти, что открыло путь к поискам ее новых источников. Появляются первые идеи о возможности использовать силу пара. В XVII веке паровую турбину, похожую на водяную мельницу, предложил итальянец Джованни Бранка (рис. 1).
Рис. 1
Судя по деталям рисунка, где изображена передача, снижающая скорость вращения в 100–125 раз, можно полагать, что какие-то опыты с ней проводились.
Но на первых порах технически проще оказалось заставить работать пар в поршневых машинах. И несмотря на большой успех, их чрезмерная сложность вскоре заставила изобретателей обратиться к турбине.
На одном из американских лесопильных заводов начала прошлого века поставили реактивную турбину, подобную эолипилу Герона. Поскольку даровое топливо (древесные опилки) имелось в изобилии, да к тому же рядом, установка проработала немало лет. Но в большинстве случаев применение паровых турбин не представлялось возможным. Расход топлива у них был в десятки раз выше, чем у паровых машин. И причина транжирства долгое время была загадкой.
А заключалась она в том, что конструкторы первых паровых турбин пытались использовать опыт турбин водяных. Поскольку плотность пара в сотни раз меньше плотности воды, струе, бьющей на лопатки, старались сообщить большую скорость. А вот делали тем же способом, что и с водой. Пропускали поток пара через сужающееся сопло. Для жидкостей это верно. Их скорость легко достигала предела, обусловленного почти полным переходом потенциальной энергии в кинетическую. Но скорость пара росла лишь до некоторого значения. И ничто — ни повышение давления, ни температуры — ее существенно не увеличивало.
Измерения показывали, что при этом в кинетическую энергию превращалась лишь ничтожная часть энергии. Турбинное же колесо — не что иное, как устройство, перехватывающее кинетическую энергию потока пара. При таких условиях КПД турбины мог быть лишь очень низким.
Чтобы справиться с задачей, необходимо было понять, что же происходит при истечении пара.
В отличие от воды, которая практически не сжимаема, пар при прохождении через сужающееся сопло, значительно увеличивает свою плотность. Образно можно сказать, что пар как бы имеет возможность выбирать: увеличивать ли ему свою кинетическую энергию или потенциальную. В сужающемся сопле он явно отдает предпочтение последнему. За счет этого темпы роста скорости убывают. Когда скорость потока достигает скорости звука, дальнейший ее рост прекращается.
Пар, покидающий устье сопла, в дальнейшем расширяется и тем самым дополнительно совершает механическую работу. Но движется он при этом в разные стороны. Как же уловить всю его энергию?
Выход из положения — позволить газу продолжать течение в условиях, когда плотность его может уменьшаться. Для этого вслед за сужением надо бы установить
расширяющийся раструб.Такие рассуждения и приводят нас к соплу Лаваля. В нем скорость газа может в несколько раз превысить скорость звука. А его кинетическая энергия на 95–98 % соответствует той части тепла, которая теоретически может перейти в работу (рис. 2).
А теперь небольшое отвлечение. В 1990 году издательство «Знание» выпустило книгу «Огонь в упряжке», авторы А. Моравский и М. Файн. В ней говорится, что сопло такого типа было изобретено еще в 1848 году ван Ратеном (английский патент № 11800). Лавалю тогда было около трех лет. А свою турбину он создал лишь через сорок лет. Стало быть, сопло он изобрел хоть и самостоятельно, но заново. Однако надо учесть, что за такой срок авторские права перестают действовать, а заключенная в патенте идея становится достоянием всего человечества.
Так что сопло назвала именем Лаваля молва человеческая.
Ван Ратен в свое время не нашел полезного применения своему соплу. Во всяком случае, турбину на его основе он не создал. И вот. видимо, почему.
Скорость истечения пара из его сопла достигала 700–800 метров в секунду. Для того чтобы использовать эту энергию, такой же должна была быть и окружная скорость турбинного колеса. Но материалов, которые могли бы ее выдержать, не было в помине. Не появились они и во времена Лаваля. Однако он эту проблему сумел преодолеть.
Начал он с того, что придал лопаткам турбины особую форму. Теперь она могла «поймать» всю кинетическую энергию пара даже при скорости, в два раза меньшей.
Но и такую скорость обычный цилиндрический диск выдержать не мог. Тогда Лаваль додумался придать ему особую форму, при которой разрывающие его центробежные силы минимальны. Теперь ротор турбины мог выдерживать окружную скорость в 440 м/с. Но турбина еще не была работоспособна. При изготовлении ротора центр его масс всегда оказывался не на оси вращения, а где-то сбоку. Это приводило к вибрации, которая быстро разрушала вал. Казалось бы, отсюда следовало сделать вал как можно толще. Но Лаваль поступил наоборот. Насадил ротор на очень тонкий гибкий вал. И когда ротор начинал вращаться, вал изгибался до тех пор, пока центр масс не оказывался на оси вращения. Вибрация прекращалась.
Было в турбину заложено и много других технических хитростей. В свое время она производила большое впечатление на современников. И казалось, она должна была изменить мир. Но из-за громадных скоростей вращения места ей в большой энергетике так и не нашлось. Вероятно, турбина Лаваля стала бы со временем диковинным устройством. Однако многое изменилось, когда пришло время ракетной техники. Первым нашел применение соплу Лаваля К.Э.Циолковский в 1898 году, предложив космическую ракету с жидкостным реактивным двигателем.
Существовавшие в то время пороховые ракеты использовали простое сужающееся сопло. В результате скорость истечения продуктов сгорания была в 2–3 раза, а дальность полета в 4–9 раз ниже возможных. Использование же сопла Лаваля в ракетных снарядах наших «катюш» стало одной из главных причин успеха этого оружия.
Такими соплами оснащаются и все жидкостные реактивные двигатели. Правда, их форма несколько отличается от классического сопла Лаваля. Что позволяет уберечь их от расплавления и более полно использовать энергию продуктов сгорания (рис. 3).