Юный техник, 2003 № 02
Шрифт:
Во-вторых, он будет двигаться световыми потоками, которые будут выбрасываться из самого летательного аппарата при помощи реакции аннигиляции — то есть соединения атомов материи и антиматерии.
«Когда античастицы будут сталкиваться с поверхностью паруса, — поясняет Хау, — возникает тяга двоякого рода. Во-первых, крошечные взрывы антиматерии, конечно же, ударят по парусу. Во-вторых, при аннигиляции, что еще более существенно, возникнет взаимодействие между античастицами и тонким слоем урана-235, покрывающего поверхность паруса. При этом произойдут миниатюрные реакции ядерного распада, которые дадут дополнительные потоки энергии.
Цель исследователей — создать аппарат, способный покрыть
Конечно, на пути создания реального аппарата, приводимого в движение антиматерией, еще немало трудностей. Основная из них — проблема хранения античастиц. Ведь их невозможно хранить в топливном баке — они просто аннигилируют, едва коснувшись его стенок. Поэтому группа Хау ныне рассматривает два гипотетических способа длительного хранения антиматерии.
Один из них заключается в удержании антипротонов в контейнере с замороженным водородом. С помощью магнитного поля и низкой температуры античастицы, возможно, удастся удерживать от столкновения со стенками контейнера все время полета.
Другой способ предполагает предварительный синтез из позитронов и антипротонов — этих зеркальных близнецов нормальных электронов и протонов — антиатомов антиводорода. «Ну а антиводород — говорит Хау, — мы, возможно, сможет хранить в так называемой ловушке Йоффе, если нам удастся ее построить»…
Ловушка эта опять-таки представляет собой скопище силовых электромагнитных полей определенной формы — скажем, полого шара. Внутри его и будут храниться частицы антиматерии в виде этаких антиснежинок.
Допустим, однако, что проблема хранения так или иначе решена. Но ведь нужно еще иметь и что хранить? Откуда взять антиматерию?..
Пока ее синтез сопряжен с огромными трудностями. Даже в самых современных физических лабораториях — например, в европейском ЦЕРНе, близ Женевы, или в американской Национальной лаборатории имени Ферми в Батавии, штат Иллинойс, — пока удается синтезировать лишь миллиардные доли грамма антиматерии. Таким образом, чтобы обеспечить запасами топлива даже самую экономичную энергетическую установку, необходимо увеличить производительность синтеза в десятки тысяч раз.
Для этого прежде всего необходимо построить охлаждающее кольцо, внутри силовых линий которого получились бы и хранились антиатомы антиматерии. Создание такого кольца обойдется по меньшей мере в 20 млн. долларов. А такие суммы, согласитесь, на дороге не валяются.
Впрочем, Хау настроен оптимистично хотя бы потому, что антиматерия может быть использована не только в двигателях нового типа. С ее помощью можно будет улучшить диагностику раковых заболеваний, облегчить обнаружение опасных материалов в багаже авиапассажиров и судовых грузах…
Словом, ей найдется немало применений не только в космосе, но и на Земле. А если у исследователей будет все в порядке с финансированием, они смогут закончить разработку прототипа двигателя на антиматерии в течение года.
Станислав СЛАВИН
Сколько весит кварк?
Американские исследователи выдвинули еще одну гипотезу о происхождении землетрясений. По их мнению, микроскопические частицы материи из космоса пробивают земную кору и вызывают ее сотрясения. Потому что весят они… более тонны.
Частицы величиной с молекулу, но имеющие массу, как легкового автомобиля, пробивают планету, к примеру, в Антарктиде, а «выскакивают» из Земли к югу от Индии», полагают Юджин Хэррин и его коллеги из Южного методистского университета в Далласе (штат Техас).
Ученые строят свою гипотезу, исходя из того, что в октябре 1993 года такое исключительное событие зарегистрировали сразу семь сейсмологических станций. В ноябре того же года еще один микроскопический метеорит ударил в Тихий океан и объявился на поверхности в Антарктиде, одновременно подтвердили девять сейсмологических станций.
По мнению Хэррина, так нашу планету способны «прострелить» только частицы сверхплотной материи (SQM — strange quark matter-nuggets), которые при микроскопических размерах имеют чудовищную плотность.
Как полагают ныне теоретики, протоны и нейтроны, из которых состоит атомное ядро, в свою очередь строятся из еще более мелких частиц — кварков. Различают шесть разновидностей кварков. Частицы SQM образуются лишь тремя из них.
Гипотезу о существовании подобных сгустков материи выдвинул в 1984 году физик Эдуард Уиттен из Принстонского университета. Согласно его гипотезе, вскоре после первоначального Большого взрыва три первых вида кварков соединились и образовали протоны и нейтроны, а потом три других вида кварков «слиплись» в сверхплотные частицы SQM.
В пользу этого предположения говорит хотя бы то, что недавно во Вселенной были открыты две звезды, которые не подходят ни под одну из существующих классификаций физических объектов.
Таинственную звезду — RXJ 1856 из созвездия Южная Корона — открыли в 1996 году с помощью немецкого орбитального телескопа «Roentgen» (RОSAT).
Она отстоит от нас на 400 световых лет, и все это время считалось, что она относится к классу обычных нейтронных звезд. Такие небесные тела образуются в результате гравитационного сжатия, коллапса сверхновых, и состоят не из атомов, а из нейтронов. Их диаметр составляет всего лишь от 20 до 32 км, а плотность — 2х1017 кг на кубический метр. Так что до недавнего времени считалось, будто нейтронные звезды самые плотные (после черных дыр) космические объекты.
Однако данные, полученные с орбитальных телескопов «Чандра» и «Хаббл», показали, что диаметр RXJ 1856 не превышает 11,3 км. Стало быть, плотность ее вещества настолько велика, что сила тяготения разрушает все и вся, оставляя лишь свободные кварки. Так, во всяком случае, полагает Джереми Дрейк, руководитель группы исследователей из Смитсонианского центра астрофизики США.
Второй кандидат на звание «кварковой звезды» — объект ЗС58 в созвездии Кассиопеи — удален от Земли на 10 000 световых лет. Его отыскал ученый из Колумбийского университета Дэвид Хелфанд, использовав для этого исторические данные. Считается, что на ее месте китайские астрономы наблюдали еще в 1181 году вспышку сверхновой.
После подобного взрыва начинается процесс колоссального сжатия массы звезды и снижения ее температуры. И по расчетам Хелфанда, в настоящее время температура ЗС58 должна была бы составлять около 2 млн. градусов. Однако, согласно спектральным замерам, она не превышает 1 млн. градусов, что делает небесный объект слишком холодным для нейтронной звезды.
«Наблюдения говорят о том, что этот объект состоит из неведомого нам вида материи, — пояснил астроном. — Вещество в нем упаковано гравитационными силами настолько плотно, что разрушились все связи не только между протонами, нейтронами и электронами, составляющими атомы, но и между кварками, из которых состоят многие частицы»…