Чтение онлайн

ЖАНРЫ

Юный техник, 2003 № 05

Журнал «Юный техник»

Шрифт:

Когда-то электричество было изысканным занятием в аристократических салонах.

Монетка-попрыгунчик. Сполосните бутылку холодной водой, положите на горлышко монетку и ждите. Вскоре монета начнет подпрыгивать. Воздух в бутылке нагревается, расшибется, приподнимает монетку и частично выходит наружу. Нагревание продолжается, и выходит следующая порция. Такой процесс называется автоколебаниями. Он широко встречается в природе. Например, бурное кипение каши в кастрюле с образованием пузырей и… вспышки на Солнце, периодическое изменение нашею настроения и колебания цен — процессы одни и те же по своей сути.

Положите на стол лист бумаги так, чтобы его край свешивался со стола. На лист положите несколько монет. Если резко

выдернуть бумагу', то монеты останутся на столе. Причина в инерции, в данном случае она проявляется как способность монеты сохранять состояние покоя. Тренированный фокусник, пользуясь тем же законом, может выдернуть скатерть из-под самовара и чашек, полных чая, и ни одна капелька не прольется!

Для очередною опыта нам понадобится волчок, сделанный из монеты. Для этого в ней придется проделать отверстие и вставить ось. Можно это сделать сверлом. Но можно и обычной иголкой, если вставить ее в пробку и бить по пробке молотком (рис. 1).

Игла при этом уцелеет, и вот почему. Иголка — это стержень. Под действием силы, сжимающей ею вдоль, он начинает гнутся задолго до того, как нагрузка превысит прочность материала на сжатие. Для тою чтобы стержень мог выдержать большую нагрузку, достаточно немного помешать ею изгибу. Именно это и делает пробка.

Осмотритесь вокруг. Вашему взору попадутся высокие радиомачты и тонкие металлические дымовые трубы. Все они имеют по бокам множество расчалок. Эти расчалки по отношению к ним выполняют ту же роль, что и пробка в отношении иголки. Итак, пробейте монету точно по середине иголкой и вставьте в отверстие ось. Получится волчок, способный очень быстро вращаться.

На кольцевой магнит положите стекло или оргстекло и запустите на нем волчок. Как только он окажется в поле действия магнита, то резко изменит траекторию движения, уйдет в сторону от магнита. Поведение волчка не зависит от магнитных свойств монеты, из которой он сделан.

Причиной взаимодействия с внешним магнитным полем являются токи Фуко (рис. 2).

Они возникают во вращающемся диске волчка. Направление этих токов всегда таково, что создаваемое ими магнитное поле направлено противоположно внешнему магнитному полю. Потому волчок всегда уходит от кольцевого магнита.

Из намагничивающейся монеты сделайте маятник. Отклоните его на небольшой угол и отпустите. Если под маятник подвести полосовой магнит, амплитуда колебаний и их период резко уменьшатся.

Поле магнита притягивает маятник и как бы усиливает его тяготение к земле, поэтому период колебания маятника уменьшается. Уберите магнит, и картина колебаний восстановится!

Обратите внимание, что в магнитном поле колебания становятся неустойчивыми. Маятник начинает двигаться по замысловатой траектории, напоминающей «восьмерку». Но это — маятник из магнитного металла. Если сделать его, например, из старого советского пятака, то вблизи сильного магнита он замедлит свое движение и быстро остановится. Это опять же связано с токами Фуко. На сей раз они, протекая по металлу, нагревают его. На это расходуется энергия, и маятник останавливается.

Это явление используется в демпферах-успокоителях колебаний стрелок электроизмерительных приборов. Дело в том, что стрелка прибора обычно устанавливается на идеальнейших подшипниках из алмаза или рубина и снабжена спиральной пружиной. После каждого измерения она способна качаться 5, а то и 10 минут. Потому и ставят на ось стрелки медный диск, помещенный в поле магнита. При колебаниях стрелки в нем возникают токи Фуко, которые быстро успокаивают ее движение.

Соберите столб из чередующихся желтых и белых монет и кусочков ткани, пропитанных подсоленной водой. У вас получится батарейка. Это устройство ныне можно рассматривать лишь как курьез, однако оно сыграло громадную роль в истории электричества. Дело в том, что еще в XVIII веке опыты с электричеством носили характер респектабельного придворного развлечения. Например, двенадцать королевских мушкетеров брались за руки, и через них пропускали искровой разряд. Получали его трением шелковой тряпочки о вращающийся шар, отлитый из серы. Мушкетеров ударяло током, и всем было весело. Но, поскольку токи были слабы и кратковременны, изучать их было невозможно, пока в 1800 году итальянский ученый Вольта не составил столб из цинковых и медных кружков с суконными прокладками, смоченными кислотой.

Получилась батарея, которую называли вольтов столб (рис. 3).

Она дала ученым токи, сила которых в миллиарды раз превышала те, что служили для развлечений при дворе. Стало возможно серьезное изучение электричества. Уже в 1803 году русский физик В.Петров при помощи самого мощного в мире вольтова столба из 1500 пар медных

и цинковых кружков получил электрическую дугу. Ту самую, при помощи которой в наши дни сваривают металлы. Ученые тех лет нередко делали вольтовы столбы из кружков цинка и золотых монет. Золото при работе столба не расходовалось, а золотые монеты всегда было можно обменять в банке по полной стоимости. Так что вольтов столб из денег был своего рода способом сбережения капитала.

Г. ТУРКИНА

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Стробоскоп для дискотеки

Какая дискотека без световых эффектов! И если вы решили устроить ее дома, пусть все будет «по-настоящему». Схема устройства, создающего яркие вспышки, изображена на рисунке.

Питается оно от сети 220 В и подключается к ней обычной штепсельной вилкой X1. Когда замыкаются контакты выключателя SA1, ток из сети, пройдя однополупериодный выпрямитель на диоде VD2, начинает заряжать накопительный конденсатор С1 через резисторы R1, R3. Один из них — R1 — позволяет изменять сопротивление зарядной цепи, а значит, и время заряда конденсатора С1. Когда напряжение заряда конденсатора С1 достигнет уровня порядка 150 В, динистор VD1 скачком переходит в проводящее состояние, вызывая бросок тока в цепи конденсатора С2 и первичной обмотки импульсного трансформатора Т1. Моментальный всплеск высокого напряжения на повышающей вторичной обмотке, соединенной с управляющим электродом лампы EL1, создает в ней мощное электрическое поле, которое ионизирует и делает электропроводным газ в лампе. В этот миг через нее происходит импульсный разряд большим током накопительного конденсатора С1, инициирующий очень яркую вспышку.

После того как конденсатор отдал запасенную энергию, лампа EL1 возвращается в исходное состояние, динистор VD1 запирается, а остаточный заряд на конденсаторе С2 «стекает» через резистор R2, чем подготавливается следующий цикл срабатывания.

Переменным резистором R1 частоту вспышек можно изменять в пределах около 1…5 Гц. Если захотите снизить частоту, можно использовать переменный резистор с большей величиной сопротивления. Единственной самодельной деталью конструкции является импульсный трансформатор; сердечником ему служит кольцо К 10x6x3 из феррита марки М2000НМ. Первичная обмотка имеет 4 витка провода ПЭЛШО 0,31, вторичная — 60 витков провода ПЭЛШО 0,1. Постоянные резисторы — типа МЛТ-0,5, переменный — СПЗ-9, его ось снабдите изолирующей ручкой. Конденсатор С1 — типа К50-19, С2 — типа К10-47. Номинальные напряжения последних взяты с запасом, это избавит их от пробоя и связанных с этим нежелательных эффектов, если динистор окажется дефектным.

Выключатель SA1 — любой двухцепевой тумблер, предназначенный для бытовых электроприборов. Предохранитель FU1 с номинальным током 1А может быть любого типа.

Устройство заключается в электроизолирующий пластмассовый корпус, на наружную поверхность которого выводятся ручки сетевого выключателя, регулятора частоты вспышек и импульсная лампа, накрытая прозрачным пластмассовым колпаком. Он может быть бесцветным или с несколькими прозрачно окрашенными сегментами. Для присоединения к сети снабдите прибор шнуром нужной длины со штепсельной вилкой на конце. Пользуясь прибором, не забывайте, что входящие в него детали и электрические соединения находятся под напряжением осветительной сети. Поэтому во время монтажа и наладки вынимайте вилку прибора из розетки. В таких случаях полагаться только на сетевой выключатель нельзя.

Ю.ПРОКОПЦЕВ

ЧИТАТЕЛЬСКИЙ КЛУБ

Вопрос — ответ

Меня давно интересует: а что находится в самом центре Земли?

Виктор СЕМЕНОВ,

г. Тула

Еще недавно полагали, что в центре Земли находится ядро из расплавленного железа и никеля. Американские ученые утверждают, что в центре Земли находится смесь урана и плутония, поддерживающая постоянную ядерную реакцию. Диаметр этого ядра — почти 8 км. Оно представляет собой естественный гигантский ядерный реактор. Сделавшие этот вывод ученые лаборатории при департаменте энергетики США считают, что работе «ядерного ядра» Земля обязана мощным магнитным полем, которое защищает планету от опасных космических лучей, способных в течение нескольких секунд уничтожить все живое. Естественный реактор «питает энергией» движение материковых платформ. И проявляется также в извержении вулканов. Ученые сделали это открытие в ходе работ, связанных с попыткой объяснить, почему каждые 200 тыс. лет магнитное поле Земли меняет направление.

Поделиться с друзьями: