Юный техник, 2003 № 06
Шрифт:
На схеме показаны редукторы со следующими отношениями: ступень 1–1:5; ступень 2–1:6. Если при постройке системы слежения будет возможность использовать червячный редуктор — это наилучший вариант, установка получится намного компактней. В крайнем случае, можно сделать редуктор, надев на вал электродвигателя резиновый кембрик, соприкасающийся со шкивом. В этом случае, правда, придется изобретать еще узел, поджимающий их друг к другу.
На валу горизонтального слежения размещается скользящая электроконтактная группа промышленного образца. Ну а если такой не найдете, увеличьте длину монтажных проводов, а саму систему настройте с помощь ограничителей на угол поворота, не превышающий 360°.
На рисунке показана приблизительная компоновка
Следящая система, как вы заметили, опубликована под рубрикой «Полигон». Вы тоже можете ее совершенствовать. Присылайте в редакцию свои варианты механики и электронной части. Будем достраивать систему вместе.
Ю. ПРОКОПЦЕВ, А. АНТОНОВ, А. ИЛЬИН
ЭКСПЕРИМЕНТ
Шарики и физика
Для изучения газовых законов аппаратуры в школах мало. Но даже если ее достаточно, работа с ней трудоемка, а получаемые результаты выглядят невразумительно. Однако посмотрите, как изящно решаются эти проблемы с помощью такого простого прибора, как воздушный шарик.
Надуйте шарик до предела и, завязав, вынесите на улицу. В морозный день шарик вскоре заметно уменьшится в размерах. Если, например, температура в комнате плюс 20 °C, а на улице — минус 20 °C, то объем шарика уменьшится на 15 %, а диаметр — на 5 %. Если вы в комнате измерите периметр шарика портновским сантиметром, то обнаружите вполне ощутимое (на 3–5 см) его «похудение» после пребывания на улице. (Для таких опытов лучше применять шарики большие.)
Надуйте шарики разного размера и натяните их на противоположные концы трубки (рис. 1).
Воздух начнет перетекать из одного шарика в другой. Думаете, большой шарик будет надувать маленький? Нет, маленький шарик надувает большой!
Причина в упругости оболочки. Обращали внимание: резиновый шарик в первые моменты трудно надувать. Когда преодолеете «мертвую» точку, дело пойдет легче. Тут проявляет себя универсальное свойство всех материалов. Вначале они сопротивляются растяжению с большей силой, но по мере дальнейшего растяжения она ослабевает. Наступает даже так называемый «предел текучести», когда для дальнейшего удлинения увеличения силы почти не требуется. У металлов такое состояние предшествует разрушению, а резина, из которой делают воздушные шарики, его прекрасно переносит. У сильно раздутого шара оболочка теряет способность активно сжиматься, и ее давление на газ очень мало. Оболочка шарика маленького размера способность к сокращению не потеряла. Поэтому он и надувает большой.
Возьмите пустую бутылку, пропихните внутрь воздушный шарик, а горловину, оставшуюся снаружи, наденьте на горлышко бутылки. Затем попытайтесь надуть шарик внутри бутылки. Даже если это будет огромная двухлитровая бутыль, у вас ничего не получится. Вообще-то, от вашего дуновения шарик раздуется, но на ничтожно малую величину: давление в бутылке повысится и станет равным давлению в шарике, после чего рост его объема прекратится.
Перед вами на одном уровне висят два шарика. Как, не касаясь шариков руками, их соединить? Решение предельно простое, но не очевидное — подуть между шариками (рис. 2).
Давление воздуха в струе всегда меньше атмосферного. Вот сила атмосферного давления с боков и приблизит шарики друг к друга. Сильная струя воздуха от фена или пылесоса позволяет сделать красивейший опыт. Подведите струю
воздуха под шарик и отпустите его. Вначале струя поднимет шарик вверх до точки равновесия, где сила тяжести уравновешивается силой давления.Казалось бы, после этого шар должен соскользнуть со струи и упасть. Нет, он неподвижно зависнет в этой точке, и его не сможет выбить из струи даже боковой удар. Дело в том, что скорость воздуха в середине струи меньше, чем по бокам.
В соответствии с законом Бернулли давление воздуха меньше в том месте, где больше скорость, то есть в середине струи. Поэтому при малейшем смещении шара вбок возникают силы, стремящиеся возвратить его в прежнее положение.
Слышали рассказы о йогах и факирах, которые преспокойно лежат на досках, утыканных множеством гвоздей? Похоже на чудо?
А вот какой опыт поставил физик С.Н. Кириллов. Надуйте воздушный шарик до больших размеров и положите его на острия гвоздей, вбитых в доску (рис. 3).
Поверх шарика поместите кусок фанеры, а на него поставьте блюдо, которое вы будете загружать, например, гирьками. Самое удивительное, что шарик, лежащий на остриях, выдерживает груз до 3 кг, но не лопается! При проведении опыта важно не допускать перекоса, поэтому желательно сделать каркас с боковыми направляющими. Гвозди следует забивать равномерно по всей плоскости на расстоянии 10–15 мм друг от друга, а острия их полезно слегка затупить.
А вот еще удивительный опыт.
Всегда ли в пламени горит резина?
Налейте в шарик воды и поместите в пламя горелки или свечки. Резина только закоптится и не более того, пока вся вода не выкипит из шарика (рис. 4).
Стенка шарика очень тонкая, и тепло огня свечи проходит через нее в воду. Температура оболочки поднимется лишь чуть выше 100 °C, оставаясь в пределах, которые резина еще выдерживает. Нечто подобное встречается в системах охлаждения ракетных двигателей.
Жар в них такой, что сантиметровая стенка из жаропрочного сплава прогорает за доли секунды. Однако тонкая, как бумага, стенка из бронзы, охлаждаемая с одной стороны потоком керосина, прекрасно этот жар выдерживает.
В продаже встречаются шары из толстой резины диаметром в полметра и более. Надуйте такой шар до максимального размера и попытайтесь его утопить. Это веселое, но невыполнимое задание. Для того чтобы понять, в чем дело, подсчитайте объем вашего шара.
Это можно сделать по классической формуле, но для наших целей достаточно точен упрощенный способ. Возведите диаметр шара в куб и разделите на два. Если диаметр выразить в дециметрах, то объем получится в литрах. Так, например, шар диаметром полметра, или пять дециметров, имеет объем 5 x 5 x 5/2 = 62,5 литра. Литр воды весит примерно 1 кг. Следовательно, чтобы утопить такой шар, нужно приложить силу в 62,5 кг, а это не так-то легко.
Реактивное движение отнюдь не достижение нашего времени. Первыми освоили его кальмары и прочие головоногие моллюски сотни миллионов лет назад. Они движутся, выбрасывая струю воды сокращением мускулатуры стенок полости своего тела. Это позволяет, например, кальмарам выпрыгивать из воды и пролетать до сорока метров.
Чтобы почувствовать, как это у них получается, надуйте шарик и, не завязывая, выпустите его из рук. Он взметнется и полетит от вас, выбрасывая струю воздуха. Обычно траектория движения такого шарика хаотична. Но его можно превратить в модель ракеты. Простейшим стабилизатором, который сделает полет устойчивым и относительно прямолинейным, может послужить кусок бумажной ленты, привязанной нитками к отверстию шарика (рис. 5).