Чтение онлайн

ЖАНРЫ

Юный техник, 2004 № 02

Журнал «Юный техник»

Шрифт:

Много времени затратил Сергей на поиск оптимального схемного решения. Наконец была определена конструкция электростимулятора на интегральной микросхеме K561ЛA9 — быстродействующей и экономичной по потреблению тока.

Сейчас уже можно говорить о том, что прибор прост, портативен и эффективен. На проведение одного сеанса требуется не более 10 минут. Космонавту Лазуткину прибор понравился. Обещал взять его в космос.

Выпуск ПВ подготовил В.ФАЛЕНСКИЙ

КОЛЛЕКЦИЯ «ЮТ»

Этот

летательный аппарат совместил в себе грузоподъемность самолета и способность вертолета садиться и взлетать без посадочной полосы. Для этого на крыльях имеются установки с мощными турбовинтовыми двигателями. На Ка-22 установлено 8 мировых рекордов по подъему грузов на высоту, которые не побиты по сей день. Предназначался для перевозки крупногабаритной военной техники и десанта.

< image l:href="#"/>

Техническая характеристика:

Диаметр главного винта… 22,5 м

Длина… 26,97 м

Высота… 10,04 м

Масса:

пустого… 25,84 т

нормальная взлетная… 37,5 т

максимальная взлетная… 42,5 т

Мощность двигателя… 2x4101 кВт

Максимальная скорость… 350 км/ч

Крейсерская скорость… 270 км/ч

Практическая дальность… до 1100 км

Практический потолок… 5500 м

Экипаж… 5 чел.

Максимальный груз… 16,5 т

Американский танк получил свое название в честь генерала Абрамса, бывшего главнокомандующего американскими войсками во Вьетнаме. Первый серийный танк M1 «Абрамс» был выпущен в феврале 1980 года на армейском танковом заводе в г. Лайме (штат Огайо). Сейчас «Абрамс» считают самым дорогим танком современности. Он оснащен системой защиты от оружия массового поражения, которая в случае необходимости обеспечивает подачу очищенного воздуха к маскам членов экипажа, приборами радиационной и химической разведки.

Техническая характеристика:

Максимальная скорость:

по шоссе… 72 км/ч

по пересеченной местности… 48,3 км/ч

Запас хода… 465 км

Высота… 2,44 м

Длина… 9,8 м

Ширина… 3,66 м

Мощность двигателя… 1500 л.с.

Боевая масса… 54,5 т

Калибр вооружений:

гладкоствольной пушки… 105 мм

командирского пулемета… 12,7 мм

пулемета заряжающего… 7,62 мм

спаренного с пушкой пулемета… 7,62 мм

Экипаж… 4 чел.

СДЕЛАЙ ДЛЯ ШКОЛЫ

О том, как Володя Миславский помог Джеймсу К.Максвеллу

Трудно представить себе науку, более глубоко проникающую в нашу жизнь, чем электродинамика. Электростанции и компьютеры, радиосвязь, химические и ядерные реакции, оптические приборы — все это и многое другое рассчитывается с ее помощью. Надо сказать, что законы электродинамики, выраженные в уравнениях, способны озадачить многих. Случалось, даже академики, как, впрочем, и сам создатель уравнений Джеймс Клерк Максвелл, не все в них понимали. Тем не менее выразить словами реальность, которую они описывают, не так уж сложно.

Силовые линии электрического поля начинаются и кончаются на зарядах или простираются в бесконечность. Линии магнитного поля всегда замкнуты. Всякий ток охвачен магнитными силовыми линиями. Если магнитное

поле переменно, то его линии охвачены линиями замкнутого переменного электрического поля.

Ясно и просто. А как это проверить?

Долгое время физиков волновал такой эксперимент.

Введем в электрическую цепь конденсатор. Постоянный ток по цепи проходить не сможет, и это естественно. Конденсатор, состоящий из двух пластин, между которыми может находиться диэлектрик, просто воздух или вакуум, — это разрыв цепи. Заряды, а значит, и электрический ток проходить через него не могут. Но если в такую цепь ввести источник переменной ЭДС, то ток по ее проводам проходит.

Происходит это за счет того, что заряды поочередно собираются то на одной, то на другой пластине конденсатора. Конденсатор величиной своей емкости ограничивает электрический заряд, а значит, и ток, проходящий по цепи за каждый полупериод изменения ЭДС. При этом энергия проходит через конденсатор за счет периодического изменения электрического поля между его пластинами. Размерность ее потока такая же, как и у энергии, переносимой электрическим током по проводам.

Это в свое время побудило Максвелла назвать энергию, проходящую через конденсатор, «током смещения». Он полагал, что ток смещения имеет такое же магнитное поле, как и ток проводника. Выходило, что силовые линии переменного электрического поля всегда должны создавать замкнутое переменное магнитное поле. А переменное магнитное поле должно создавать замкнутое переменное электрическое поле. Этот процесс, периодически повторяясь, приводит к возникновению электромагнитных волн.

Из этих рассуждений получалось, что между пластинами конденсатора должно существовать замкнутое вихревое магнитное поле (рис. 1).

Физиков XIX века волновал вопрос, так ли это. Подтвердить это из-за несовершенства техники им удалось лишь косвенно, а потом о проблеме забыли.

В 1992 году решил к ней вернуться Владимир Миславский — ученик 7-го класса одной из школ г. Звенигорода. Еще учась в четвертом классе и томясь от летней скуки в доме отдыха, где он отдыхал с родителями, Володя читал книгу В.Карцева «Приключения великих уравнений». Наверное, он многого бы в них не понял, но случайно поблизости оказался некий гражданин. Он все растолковал, все стало не только понятно, даже интересно. Новый знакомый уехал, а Володя остался размышлять.

Для того чтобы уловить магнитное поле, он решил поместить между пластинами конденсатора магнитопровод с катушкой. Физики далекого прошлого такой опыт поставить не могли, ибо им пришлось бы сделать магнитопровод из железа, а оно, будучи проводником, сильно повлияло бы на поле конденсатора. А в распоряжении Володи был феррит — прекрасный диэлектрик.

Володя склеил из плоских ферритовых антенн рамку размером 30x40 см и поместил ее между пластинами такого же конденсатора (рис. 2).

< image l:href="#"/>

На рамке он намотал обмотку из сотни витков. В первом опыте Володя присоединил ее к осциллографу, а на конденсатор подал напряжение частотой 10 кГц от школьного звукового генератора. На экране появилась синусоида. Это говорило о том, что магнитопровод поймал магнитное поле между пластинами конденсатора.

После этого В.Миславский поменял местами генератор и осциллограф и опять увидел на экране синусоиду. Переменное магнитное поле, возникавшее в рамке от протекавшего по ее обмотке тока звукового генератора, вызывало вихревое электрическое поле. Оно периодически заряжало пластины конденсатора, а изменение напряжения на них было видно на экране осциллографа.

Поделиться с друзьями: