Юный техник, 2012 № 11
Шрифт:
Краситель проник скозь мембрану.
Мембрана, окружающая содержимое яйца, становится в уксусе очень эластичной, поскольку кислота меняет структуру белка. Тот же процесс, кстати, происходит в результате воздействия кислот, щелочей и высоких температур. Когда вы готовите яичницу, яичный белок становится непрозрачным и белым именно из-за изменения структуры денатурации.
Таким образом, после вымачивания в уксусе вы должны заметить, что яйцо не только осталось
Если положить яйцо без скорлупы в воду, оно будет расти в размерах намного заметнее. И если добавить в воду краситель, процесс осмоса станет еще нагляднее: окрашенная вода будет проникать в поверхностные слои яйца.
Если же вы поместите пропитанное уксусом яйцо в сироп, то увидите обратное. Поскольку в яйце больше воды, чем в сиропе, то вода из него будет проходить сквозь мембрану в противоположном направлении, и яйцо станет уменьшаться в размерах.
Яйцо в сиропе теряет влагу.
Следующий эксперимент демонстрирует действие осмоса на растения.
Заполните водой два блюдца и добавьте в одно из них две столовые ложки соли. Аккуратно разрежьте картофелину вдоль на две половинки и положите их плоской стороной вниз в блюдца с водой.
Спустя часа два-три посмотрите на ваши образцы. Половинка картофеля, пролежавшая в пресной воде, станет чуть жестче, чем раньше, поскольку содержащиеся в ее клетках соли и другие химические вещества успеют уйти сквозь мембрану в воду.
Половинка картофелины, замоченная в соленой воде, напротив, станет очень мягкой, поскольку соленая вода вытянет из картофеля влагу.
Так что, попав летом на море, не сидите долго в его соленой воде. Это шутка: кожа человека надежно его защищает, так что стать мягким вам не удастся, купайтесь вы хоть целый час.
И. ЗВЕРЕВ
ПОЛИГОН
Сколько бензина в литре… воды?
В 1991 году американский инженер Дж. Григгс сделал такую помпу, в которой вода текла с большим затруднением, трение получалось огромным и вода из насоса выходила горячей. При помощи такого насоса Григгс перекачал воду из одного бака в другой и произвел расчеты.
Выяснилось, что каждый киловатт энергии, подведенной к насосу, приносил в бак 1,15 киловатта тепла!
Ученые начали искать объяснения феномена и вместе с Григгсом изучать все тонкости процесса. А бизнесмены занялись своим делом: есть помпа, создающая избыточную энергию, она может дать 15 % избыточного тепла, а если постараться — то даже 60 %! Так почему бы не применить ее для отопления домов? И помпы — их стали называть вихревыми насосами — поступили в продажу.
А дальше началось что-то странное. Одни покупатели отмечали значительную экономию энергии, а другие жаловались, что толку от покупки нет. В чем же дело?
Возможно, разгадку нашли недавно на одном из московских автосервисов. Стоит он на отшибе, отапливать помещение и подогревать воду для мойки автомобилей здесь можно только при помощи электричества. Нужно его немало, и владельцы, заботясь об экономии, приобрели вихревой генератор.
В первый год экономии не получилось, а люди на станции мерзли. Тогда решили добавить к системе отопления бак с обычным электронагревателем, а вихревой генератор использовать как насос, способный к тому же давать
тепло. И тут-то начались приятные чудеса.Во-первых, на станции стало жарко, во-вторых, КПД превысил 100 % — где-то стало появляться избыточное тепло! Но где?
Прошлись по всей цепочке от мотора вихревого генератора до ТЭНа и всех батарей, нагревающих помещение, и вот что заметили. Прежде всего, «чудеса» начинаются лишь тогда, когда в вихревой генератор подается вода с температурой не ниже 65 °C. После него она становится белой, как молоко, и поступает в цепочку батарей.
Обычно температура воды от батареи к батарее снижается примерно на 5 градусов, но, когда включили вихревой генератор и послали в сеть отопления подогретую воду, началось нечто удивительное. Пройдя через первую батарею, вода нисколько не понизила свою температуру. Пройдя через вторую, не остыла, а стала по чему-то еще горячее. Лишь после третьей батареи вода снова остыла до 65 °C и при этом стала прозрачной.
А дальше все пошло как положено: после каждой батареи вода становилась на 5 градусов хллоднее. Более того, если эту воду пропускали по кругу второй раз, излишнего тепла уже не получали. Зато если добавляли свежей, эффект повторялся. Так чем же свежая вода отличается от «отработанной»?
Исследуя воду при помощи рентгеновских лучей, ученые обнаружили, что в ней содержатся упорядоченные структуры, напоминающие структуры кристалла. Наиболее часто среди них встречаются кольцеобразные структуры, состоящие из 6 или 8 молекул. При взбалтывании воды в помпе вихревого генератора эти структуры разрываются и начинают отдавать энергию, которая была затрачена природой на создание этих структур.
Каждый литр воды давал при этом столько же дополнительной энергии, сколько дают при сгорании 15 грамм бензина. Не так уж мало!
На что потом годится вода, прошедшая через вихревой генератор? Она испарится, восстановит за счет энергии Солнца свою структуру и, выпав на землю дождем или снегом, снова попадет в трубы и сможет вновь отдавать запасенную энергию. А чтобы ее извлечь, по-видимому, не обязательно покупать дорогой вихревой генератор. Это можно сделать, прокачивая нагретую до 65 °C воду обычным насосом через небольшое отверстие.
А. ИЛЬИН
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Генератор прямоугольных импульсов
При налаживании радиолюбительских конструкций бывает очень полезен источник испытательного сигнала. Им можно проверить телефоны или громкоговоритель, найти неисправный каскад, оценить вносимые искажения.
Такое средство есть — это генератор сигналов звуковой частоты.
Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний.
Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому для диапазона звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны.