Занимательно о химии
Шрифт:
Железо вовсе не котируется в качестве образца твердости. Пальма первенства принадлежит здесь хрому, который этой своей особенностью лишь немного уступает алмазу. Вот, кстати, парадокс: чемпионы по твердости среди химических элементов — отнюдь не металлы. В шкале сравнительной твердости на первом месте стоят углерод в форме алмаза и кристаллический бор. Железо же скорее мягкий металл: оно в два раза менее твердо, чем хром. А наши знакомые легковесы — щелочные металлы — почти так же мягки, как воск.
Все металлы — вещества твердые, твердые в той или иной
Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезия легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.
В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.
Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома). то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?
Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.
Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.
Какое первое химическое соединение сознательно получил человек?
Историки науки не могут ответить с полной определенностью.
Мы рискнем сделать собственное предположение.
Первым веществом, которое люди приготовляли, заранее зная, что они хотят получить, было… соединение двух металлов — меди и олова. Мы сознательно не употребили слово «химическое». Потому что соединение меди и олова (а это самая обыкновенная, всем известная бронза) необычное. Оно называется сплавом.
Древние люди научились сначала выплавлять металлы из их руд, а уже затем сплавлять друг с другом.
Так на заре цивилизации появились зерна одной из отраслей будущей науки химии. Ее называют теперь металлохимия, или химия металлов.
Строение соединений металлов с неметаллами обычно определяется валентностью входящих в них элементов. Скажем, в молекуле поваренной соли содержится положительно одновалентный натрий и отрицательно одновалентный хлор. В молекуле
аммиака NH 3отрицательно трехвалентный азот связан с тремя положительно одновалентными атомами водорода.Химические соединения металлов друг с другом (их называют интерметаллическими соединениями) законам валентности обычно не подчиняются. Их состав не связан с валентностью реагирующих элементов. Поэтому формулы интерметаллических соединений выглядят довольно странно, например MgZn 5, KCd 7, NaZn 12и так далее. Одна и та же пара металлов часто может образовывать несколько интерметаллических продуктов, скажем, натрий с оловом дают девять таких удивительных образований.
Металлы могут взаимодействовать между собой, как правило, в расплавленном состоянии. Но не всегда сплавляемые металлы образуют друг с другом химические соединения. Иногда один металл просто растворяется в другом. Образуется однородная смесь неопределенного состава, ее не удается выразить четкой химической формулой. Такую смесь именуют твердым раствором.
Сплавов огромное количество. И никто еще не взял на себя труд хотя бы приблизительно подсчитать, сколько их уже известно и сколько вообще может быть получено. Здесь снова «пахнет» миллионами, как в мире органических соединений.
Известны сплавы, состоящие из доброго десятка металлов, и каждая новая добавка по-своему влияет на свойства. Известны сплавы из двух металлов — биметаллические, но в зависимости от того, сколько какого компонента взято, свойства будут различными.
Одни металлы сплавляются очень легко и в любой пропорции. Таковы бронза и латунь (сплав меди с цинком). Другие ни при каких условиях не желают сплавляться, например медь с вольфрамом. Ученые все же приготовили их сплав, но необычным путем, методом так называемой порошковой металлургии: спеканием медного и вольфрамового порошка под давлением.
Существуют сплавы жидкие при комнатной температуре и сплавы исключительно жаростойкие, которые охотно берет на вооружение космическая техника. Немало, наконец, таких сплавов, что не разрушаются под действием даже самых сильных химических реагентов, и сплавов, по твердости лишь немного уступающих алмазу…
Кибернетические машины могут многое. Они научились играть в шахматы; предсказывать погоду; выяснять, что происходит в недрах далеких звезд; производить расчеты совершенно невообразимой трудности. Только умей задать им программу действий. И все крепче становится дружба кибернетики с большой химией. Огромные заводы-автоматы, управляемые счетно-вычислительными машинами. Множество химических процессов, о которых исследователям все становится известным ранее, чем эти процессы осуществят на практике…
Но есть в распоряжении химиков одна совершенно необычная «кибернетическая» машина. Она была изобретена около ста лет назад, когда и само слово «кибернетика» отсутствовало в языках народов мира.
Эта удивительная машина — периодическая система элементов.
Она позволила ученым делать то, на что ранее не отваживались даже самые дерзкие из исследователей. Периодическая система дала возможность предсказывать существование элементов, еще не известных, еще не открытых в лабораториях. Мало предсказывать. Она выдавала данные о том, какими свойствами будут обладать эти незнакомцы. Окажутся они металлами или неметаллами. Будут тяжелыми, как свинец, или легкими, как натрий. В каких земных рудах и минералах следует искать неизвестные элементы. Даже на эти вопросы давала ответ «кибернетическая» машина, изобретенная Менделеевым.