Чтение онлайн

ЖАНРЫ

Занимательно о космологии
Шрифт:

Так споры о моделях мира переплелись со спорами о мировоззрении двух непримиримых лагерей: материализма и идеализма.

Между тем спорящим сторонам предстояло договориться прежде всего о самом предмете спора. Потому что, как выяснилось, далеко не все представители бурно развивающейся космологии вкладывали в термин «вселенная» одинаковое понятие. Короче говоря, к середине текущего столетия космология представляла собой хорошо и со знанием дела перепутанный клубок противоречий. Распутывать его выпало на долю ученым нашего поколения.

Глава девятая

в
которой читатель наконец-то, во-первых, попадает в собственное время, во-вторых, знакомится с результатами практической деятельности астрономов и космологов и, в-третьих… В-третьих, правда по замыслу автора, читатель должен убедиться, что легче ему от всего вышеизложенного не стало

Удивительны науки о вселенной. С одной стороны, их методы позволяют заметить разницу в положении небесных объектов, измеряемую долями угловых секунд. И тут же, рядом, существуют приближения, о которых говорят, что результаты вполне хороши, если не отличаются больше, чем на порядок…

Космология за последнее время из разряда чисто умозрительных наук переходит в разряд наук физических. И как всякая развивающаяся отрасль знания, переживающая период становления, она занята уточнением и переоценкой своих результатов. Поэтому автор хотел бы предупредить читателя, что значения многих величин пока не окончательны. У разных наблюдателей одни и те же исследования сегодня еще дают разные результаты, которые лишь постепенно приближаются к истине. Нужно помнить, что каждая цифра во внегалактической астрономии дается ценою невероятного напряжения, ценой дьявольских ухищрений как теоретических, так и экспериментальных. А ведь внегалактическая астрономия — это один из главных поставщиков фактического материала для космологии. Читателю, проникшемуся идеями расширяющейся вселенной, должно быть уже совершенно ясно, что чем дальше от нас расположен объект наблюдения, тем больше времени требуется свету, чтобы добраться до земных телескопов, а следовательно, тем более «молодым» мы этот объект видим…

Свет и радиоволны, несущие нам основную информацию о небесных объектах, пробегают в космосе примерно 300 тысяч км/сек. Солнце находится в восьми минутах светового хода от нас. Значит, мы каждый раз, взглянув на наше светило, видим его таким, какое оно было восемь минут назад. А если объект наблюдения находится дальше?

Свет от Проксимы центавра добирается до Земли четыре с лишним года. Следовательно, потухни соседка нашего Солнца в одночасье, мы бы узнали об этом лишь через четыре с лишним года.

А если такой объект наблюдения, как, например, галактика туманность Андромеды, отодвинут от нас миллиона на два световых лет? Значит, мы и видим его сейчас таким, каким он был два миллионолетия назад, когда световой поток покидал его звездные просторы. Рассматривая последовательно все более удаленные небесные объекты, мы словно пользуемся «машиной времени» для того, чтобы проникнуть в прошлое нашей вселенной.

«Машиной времени»! Впереди у нас еще увлекательное путешествие при помощи этого фантастического вида транспорта. Впрочем, фантазия никогда не служила науке помехой…

От «радиозвезд» до звездоподобных объектов

В 1932 году молодой инженер Карл Янский открыл радиоизлучение ядра Галактики. Затем в 1946 году в печати появилась публикация трех английских ученых Хея, Парсонса и Дж. Филлипса, обнаруживших мощное радиоизлучение из небольшого участка неба в созвездии Лебедя: был открыт первый дискретный источник радиоизлучения. Скоро за ним последовали находки и других источников. Вначале, пока разрешающая способность радиотелескопов была незначительной, небесные «радиостанции», казалось, занимали очень маленькие участки неба, как звезды. Так их и считали «радиозвездами». Но со временем «зрение» радиотелескопов становилось все острее и острее, и наблюдатели обнаружили, что контуры «радиозвезд» начинают расплываться. Не увязывались «радиозвезды» и с теорией. Все это привело к тому, что от гипотезы

«радиозвезд» пришлось отказаться.

Многие радиоисточники вначале были отождествлены с облаками газа. Но вот являются эти «радиооблака» членами Галактики или это внегалактические объекты — было неизвестно. Первый дискретный источник радиоизлучения, отождествленный с оптическим объектом за пределами солнечной системы, оказался расположенным в Крабовидной туманности. В 1949 году австралийские астрономы Болтон и Стэнли определили его точные координаты.

В 1950 году англичане Хенбери Браун и Хазард обнаружили слабое радиоизлучение уже от галактики Андромеды. Но «радиозвезды» еще не окончательно сдали свои позиции. Полный переворот произошел, когда Вальтеру Бааде удалось отождествить самый первый источник Лебедь- с оптическим объектом, удаленным на полмиллиарда световых лет. Этот объект по очертаниям похож на восьмерку, каждая половинка которой — галактика. В связи с этим родилась гипотеза, будто космическое радиоизлучение есть результат столкновения далеких галактик. Но какой механизм мог вызвать такое мощное излучение энергии? Здесь было много предположений. Наиболее плодотворной оказалась теория советских ученых В. Л. Гинзбурга и И. С. Шкловского о том, что излучение возникает в результате движения электронов очень высоких энергий в магнитном поле. Эта гипотеза в дальнейшем получила название «синхротронного излучения» и сейчас широко применяется для объяснения космического излучения.

В конце пятидесятых годов физики-теоретики задумались над тем, какие процессы могут создавать электроны таких высоких энергий. В результате расчетов выяснилось, что почти все сто процентов энергии столкновения двух галактик должны превратиться в энергию электронов. Столкновения же, изученные в лабораторных условиях на самых лучших ускорителях, давали переход всего одного процента энергии столкновения в энергию излучения. А ведь в лаборатории процессы строго направлялись экспериментаторами и не были столь хаотичными, как в пространстве… Нет, тут явно что-то было не в порядке с самой гипотезой столкновения. Академик В. А. Амбарцумян, развивая теорию взрывов в ядрах галактик, как закономерной фазы развития последних, подверг решительной критике гипотезу сталкивающихся галактик.

И наконец, последний удар гипотезе столкновения галактик был нанесен в 1960 году. Астрономы Мэтьюз и Шмидт из Калифорнийского технологического института отождествляли большинство источников радиоизлучения с одиночными галактиками. К этому времени и относится начало работ на английской обсерватории Джорделя Бэнк по программе измерений угловых размеров небесных радиоисточников. Англичане исследовали добрых три сотни радиообъектов. Радиотелескоп с высокой разрешающей способностью позволил выяснить, что существуют источники чрезвычайно малых угловых размеров, до одной секунды дуги и даже еще меньше.

Это открытие возвращало к похороненной идее «радиозвезд», и до конца 1962 года так и считали, что открыты не что иное, как звездоподобные объекты, населяющие нашу Галактику. Но вот один из странных звездоподобных объектов, зарегистрированных в третьем кембриджском каталоге как ЗС48, показал удивительный, ни на что не похожий спектр. Ни одна линия его не совпадала с твердо установленными положениями линий атомных спектров. Мало того, его световое излучение оказалось переменным. Последнее обстоятельство окончательно указывало на то, что объект ЗС48 должен быть небольшим, компактным, короче, он должен быть типа звезды. Это, пожалуй, нуждается в объяснении.

Когда мы для звездоподобных объектов применяем эпитеты «большой» или «небольшой, компактный», то понимать их следует в звездном масштабе. «Большой» — значит от края объекта и до края свет путешествует годы… А как вы думаете, может такой гигант столь согласованно подмигивать? Пожалуй, нет! Представить себе механизм, заставляющий объект протяженностью во много световых лет одновременно менять яркость, это означало бы отказаться от принципа, согласно которому скорость света максимальна; тогда нужно допустить «мгновенное распространение сигналов». А это уж слишком явный шаг назад.

Поделиться с друзьями: