Занимательно о железе
Шрифт:
В прокатном стане, разработанном под руководством В.Н. Выдрина, один из валков клети вращается с большой скоростью. При этом обрабатываемая полоса не просто изгибается в сторону более быстроходного валка, но еще и охватывает его — словно прилипает к его поверхности. Затем лента попадает в следующую пару валков и тоже “обнимает” быстроходный валок, изгибаясь уже в противоположную сторону. Площадь контакта с металлом уже намного больше соответственно возросли и силы сцепления. Значит, можно уменьшить усилия обжатия, диаметр валков, мощность двигателей, а в итоге и размеры всего стана.
Чтобы прокатать стальную ленту, нужны огромные усилия. А здесь и валки, и сам стан поражали миниатюрностью, даже каким-то изяществом формы. Правда, добиться этого
Непрерывные листовые станы всегда имеют вспомогательный агрегат-моталку, на которую в рулон наматывается готовая полоса. “А нельзя ли поручить моталке дополнительную операцию? — задумались ученые. И заставили ее не просто принимать на себя готовый прокат, но и с силой вытягивать ленту из валков. Внешне этот процесс напоминал волочение проволоки, когда она с натяжением протягивается через твердосплавный фильер, приобретая нужные размеры и форму. Поэтому ученые, объединившие две, казалось бы, несовместимые операции (прокатку и волочение), назвали новый процесс прокатка — волочение.
Да, говорят, что большие открытия сегодня рождаются “на стыках”. “Гибридная” технология позволяет металлу как бы мобилизовать дополнительные “резервы” пластичности. Отсюда и результат — более качественная продукция. У проката на новых станах точные размеры, более высокая чистота поверхности, в ряде случаев он не нуждается в дополнительных чистовых операциях. Одновременно на этих станах экономят 3–5% металла.
Идея “гибридизации” двух процессов оказалась на редкость щедрой, давая новые направления в технологии. Так, ученые решили оборудовать прокатную клеть дополнительной парой вертикальных валков, как у слябинга. Только в отличие от него сделать валки не гладкими, а калиброванными. Оказалось, что в этом случае можно совместить прокатку и… ковку. Фантастика? Нет! Уже первые эксперименты, в которых при получении сложных деталей был исключен кузнечный молот, дали многообещающие результаты.
При прокатке металла постоянно наблюдаются колебания размеров исходных заготовок, температуры прокатки и механических свойств. Это приводит на действующих станах с рабочими клетями низкой жесткости к широкому полю допусков на размеры прокатываемых профилей. В результате ухудшается качество изделий, теряется много металла.
Как уменьшить эти потери и получить прирост готового проката без дополнительной выплавки стали — задача исключительно важная. Именно в этом направлении сосредоточили свои усилия два ведущих коллектива страны — ученые и конструкторы ВНИИметмаша и металлурги Череповецкого комбината им. 50-летия СССР.
Представляя работу этих коллективов на соискание Ленинской премии, профессор П.И. Полухин рассказал, что, начиная с 60-х годов, специалисты института и завода в тесном сотрудничестве провели комплекс фундаментальных теоретических и экспериментальных технологических исследований процессов прокатки точных профилей и на их основе создали принципиально новую систему прокатных станов с рабочими клетями высокой жесткости, не имеющую аналогов в мировой практике.
В новых клетях жесткость по сравнению с традиционной повышена в 8–12 раз. Это позволило значительно повысить точность прокатываемых профилей. В результате резкого сокращения веса новых клетей и их габаритов оказалось возможным в промежутках между клетями стана установить новую систему автоматического регулирования, обеспечивающую непрерывную прокатку катанки без натяжения. Это позволило создать полную устойчивость процесса прокатки и увеличило выход годного металла на 1,5%. Повышение качества прокатываемого металла достигнуто и благодаря созданию эффективной системы термоупрочнения проката.
Новая система станов внедрена на Череповецком металлургическом комбинате. В ее состав входят непрерывный проволочный стан 250, непрерывный мелкосортный стан 250 и полунепрерывный среднесортный стан 350. Эта система в технико-экономическом отношении имеет бесспорное преимущество по сравнению с существующими.
На
новых станах Череповецкого металлургического комбината из первых 7 миллионов тонн сортового проката получено дополнительно без выплавки стали более 250 тысяч тонн металла, а экономический эффект от внедрения новой системы составил около 60 миллионов рублей.Особое место в работе уделено резкому снижению металлоемкости клетей (в 2,5–4,5 раза) и повышению надежности и ресурса работы оборудования. Уменьшение массы рабочих клетей прокатных станов важно как с точки зрения экономии металла для их изготовления, так и уменьшения габаритов, облегчения фундаментов, снижения мощности грузоподъемных средств, а также сокращения трудовых затрат на многочисленных операциях цикла изготовления, монтажа и эксплуатации оборудования прокатных цехов.
“Прокатка благодаря непрерывности процесса, — пишет академик А.И. Целиков, — является самым производительным способом формообразования металла. Поэтому целесообразно использовать прокатку не только для изготовления профильных металлических изделий, в том числе листов и труб, но и многих других изделий и особенно заготовок для разных деталей машин”. К черной металлургии переходят в большей степени первичные металлообрабатывающие формообразования.
Высокие давления
Состояние вещества, как известно, определяется температурой, давлением, концентрацией, электрическим и магнитным полями. Если температура и концентрация являются для металлурга привычными факторами, при помощи которых он уже давно меняет фазовый состав и структуру сплавов, то давление (за исключением методов обработки металлов давлением) лишь в последние годы используют для проведения практических и исследовательских работ. Причина этого — достижение техники высоких всесторонних давлений и очевидные успехи в получении при их помощи новых материалов.
В течение ряда лет ученые МГУ, Харьковского физико-технического института АН УССР и Института физики высоких давлений АН СССР проводили подробные теоретические и экспериментальные исследования влияния давления на физические свойства металлов.
Госкомитет СССР по делам изобретений и открытий 18 декабря 1980 года зарегистрировал открытие, сделанное советскими физиками. Авторы открытия доказали, что при достижении критических значений упругих деформаций кристаллической решетки металлов могут наблюдаться специфические явления, связанные с резким качественным изменением свойств электронов, определяющих проводимость металла. Последнее приводит к изменению всего комплекса электрофизических свойств вещества.
Сделанное открытие имеет важное значение в науке и технике. Оно обогатило современные представления о физических свойствах металлов и сплавов и предоставило возможности целенаправленного получения материалов с новыми необычными свойствами.
Известно, что металлам свойственна аллотропия — способность существовать в различных кристаллических формах. Воздействуя на металл или сплав при помощи высокого давления, можно в некоторых случаях изменить фазовый состав сплава, получить новые модификации с иной кристаллической решеткой и зафиксировать эти новые состояния вещества путем быстрого охлаждения при снятии давления.
Но не только лабораторные установки могут дать высокое давление. Появляется заводская техника для этого. В последние годы за рубежом и в нашей стране в обработке металлов давлением все чаще применяют процессы горячего прессования (выдавливания) и гидроэкструзии. Сущность гидроэкструзии заключается в том, что истечение металла из замкнутого объема через матрицу совершается под действием жидкости высокого давления. Между деформируемым металлом и прессовым инструментом отсутствует контакт. Формоизменение заготовки осуществляется в условиях жидкостного трения. Силы трения при перемещении жидкости с большей скоростью, чем металл, уже не являются тормозящими, а способствуют движению и деформации металла.