Чтение онлайн

ЖАНРЫ

Занимательно об энергетике
Шрифт:

Так что, возможно, есть целые миры, во всяком случае в нашей Галактике, обильные даровым водородом. К тому же и «расфасованным» в самом удобном виде. Вот только как до него добраться?..

Водород против электричества

Человек легко привыкает к удобствам и трудно с ними расстается. Наибольший сервис сейчас дает ему электричество. Еще совсем недавно всюду пропагандировалась идея «дома все на электричестве». Но, возможно, вскоре взгляды могут существенно измениться, и виноват в этом будет водород. Недавно за рубежом в целях рекламы даже построили «дом на водороде».

Тут все на водороде. Освещение осуществляют специальные лампы, в которых фосфорные

соединения, вступая в реакцию с водородом, излучают свет. Приготовить пищу можно на газовых плитах, где водород, смешанный с углекислым газом, служит топливом. Необходимую электроэнергию (связь, радио, телевизоры) вырабатывают водородно-воздушные топливные элементы, установленные в доме. Оригинально и отопление: особые пористые панели, насыщенные катализатором, омываются водородом. Окисляясь, он нагревает панель, которая и становится источником тепла. Но отчего водород оказался лучше электроэнергии? Какие резоны? Экономические. Выгоднее на отдельные фермы или коттеджи подавать энергию не в виде электричества, а в виде газа. А уже на месте потребления электроэнергию (без нее все же совсем обойтись трудно) извлекать из водорода.

Итак, даже электричество, этот всепроникающий источник энергии, может быть потеснено водородом. При передаче электроэнергии по проводам на дальние расстояния потери составляют 20 процентов. Подсчеты показывают: транспортировка водорода по трубам при протяженности линий свыше 500—600 километров (а энерголинии из Сибири в европейскую часть СССР тянутся на многие тысячи километров!) дешевле передачи электроэнергии по проводам ЛЭП в 10 раз! Так не лучше ли использовать электроэнергию прямо на месте ее выработки на электролиз воды? А получающийся при этом водород транспортировать потребителю по трубопроводам и уже там, на месте, сжигать либо в тепловых машинах, либо, что гораздо выгоднее (вспомним про КПД!), в топливных элементах.

Так возникают контуры водородной энергетики.

Возможно, уже в недалеком будущем в обиход войдет не слишком благозвучное слово «водородопровод». По крайней мере, в ФРГ и США уже построены магистрали длиной в сотни километров.

Но электричество и водород не обязательно должны быть непримиримыми конкурентами. Они, оказывается, прекрасно дополняют друг друга.

Когда в Москве вечером разом выключаются миллионы телевизоров и заканчивают работу многие предприятия, потребление электроэнергии из городской сети сразу резко уменьшается. При чем тут водород? А при том, что электричество, поступающее непрерывно и требующее непрерывного же потребления, можно в это время заставить, скажем, в процессе того же электролиза разлагать воду на водород и кислород.

Тогда ранним утром, когда начинается рабочий день на фабриках и заводах и резко подскакивает потребность в энергии, накопленный за ночь водород можно было бы влить в общий энергетический поток.

Так, водород помог бы в борьбе с одной из тяжелых и хронических болезней крупных энергосистем — неравномерностью нагрузки.

Могут возразить: водород пока еще довольно дорог. Да, это верно. Однако тенденции тут таковы. Исчерпание нефтяных месторождений ведет к росту цен на бензин, а со временем и просто к его нехватке.

В то же время цены на водород будут неуклонно снижаться с ростом масштабов его производства и с удешевлением электроэнергии. И тот водород, который сейчас значительно дороже бензина, со временем может стать дешевле его.

Когда цены сравняются, наступит эра автомобиля, работающего на водородном топливе.

«Водородная энергетика», о ней много говорят сейчас. В марте 1976 года в Майами-Бич (США) состоялась первая Международная конференция по водородной энергетике и

технологии. Она шла под девизом «Мост в водородное будущее».

Хранение с выгодой

О похвальных свойствах водорода люди догадывались давно. Еще в 1820 году в Кембриджском философском обществе обсуждался доклад «Об использовании водорода в качестве топлива для движущихся машин.

В 1927 году фирма «Цеппелин» выпустила двигатели, работавшие на водородном топливе. В 1968 году в Институте теоретической и прикладной механики Сибирского отделения Академии наук СССР проводились испытания двигателей ГАЗ-652 на водородном горючем.

В 1972 году в США происходил межуниверситетский конкурс на лучшую конструкцию городского автомобиля. Первое место занял автомобиль на водороде.

А вот и» совсем свежие (1980 г.) новости. В Харькове появилась первая «водородная колонка». Харьковчанин сел в обычное такси, проехал весь город, не догадываясь, что двигатель этой машины работает не на чистом бензине, а на его смеси с водородом. Только водород попадает не в бак, а в специальный «аккумулятор», где немедленно «связывается» металлическим порошком, который прочно удерживает газ и делает его абсолютно взрывобезопасным. Во время движения авто водород в строгой дозировке, контролируемой приборами, вместе с бензином подается в камеру сгорания двигателя. Это позволяет более чем на одну треть сократить расход бензина и резко снизить содержание вредных веществ в выхлопных газах.

Новинка разработана учеными Института проблем машиностроения Академии наук Украины и Харьковского автодорожного института.

Ну же! Казалось бы, еще один миг — и водород получит окончательную прописку в транспорте.

Что мешает тому, чтобы водород стал топливом для «безлошадных карет», заменил дорожающий бензин? Какие возражения выдвигают противники водорода?

Ну, первое: не опасно ли разъезжать на водородо-мобиле? Ведь водород взрывоопасен!

Еще со времен школьных опытов в химическом кабинете мы помним эффектные взрывы гремучего газа. Да, на всех предприятиях, где в ходу водород, обязательно встретишь надпись: «Курить воспрещается!»

Но и спички опасны, особенно при неумелом обращении. И смесь паров бензина с воздухом взрывается ничуть не хуже смеси водорода с воздухом.

А такие «взрывы» происходят в автомобиле по многу раз в секунду! Короче, признано: употребление водорода не более опасно, чем использование обычного светильного газа.

Вот более весомое возражение. Водород имеет очень низкую плотность и занимает большой объем. Для уменьшения объема его необходимо подвергнуть сжижению при очень низкой температуре (минус 252 градуса по Цельсию) и при высоком давлении. Уже одна эта операция требует большого расхода энергии. Но даже в сжиженном состоянии водород имеет плотность в три-четыре раза меньшую, чем плотность нефти. Следовательно, при их равной массе для водорода требуются куда более вместительные резервуары.

Еще одна существенная трудность: как хранить водород? Для хранения 20 килограммов жидкого водорода под давлением 200 атмосфер необходим бронированный резервуар размером с автомобиль и весящий около тонны.

Если бы водород не обладал высокой энергетической отдачей, выбор давно пал бы на синтетические виды горючего, получаемые из угля. Но, к счастью, в последние годы появились новые, очень перспективные методы хранения водорода. Так, в частности, используется размельченный, с очень высокой удельной поверхностью сплав — «металлический гидрид». Он действует как губка, поглощающая большие порции водорода. Баки, заполненные гидридом, вмещают в 40 раз больше водорода, чем баки, заполненные только газом.

Поделиться с друзьями: