Чтение онлайн

ЖАНРЫ

Защита от хакеров корпоративных сетей

авторов Коллектив

Шрифт:

/* sprbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* sprbufo.c demonstrates the problem */

/* with the sprintf function which */

/* is part of the c library. This */

/* program demonstrates sprintf not */

/* sufficiently checking input. When */

/* executed with an argument of 8 bytes */

/* or more a buffer overflow occurs. */

#include <stdio.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8];

sprintf(c, “%s”, b);

return;

}

Как и в предыдущем примере, строка символов аргумента программы копируется в восьмибайтовый массив символов. Поскольку при копировании из argv [1] не выполняется никаких проверок на соответствие размера пересылаемых данных размеру памяти, в которую выполняется

копирование, то в результате возможно переполнение буфера. Применение функции strcat без проверки размера обрабатываемых данных также может привести к переполнению буфера, как это видно из следующего примера:

/* scatbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* scatbufo.c demonstrates the problem */

/* with the strcat function which */

/* is part of the c library. This */

/* program demonstrates strcat not */

/* sufficiently checking input. When */

/* executed with a 7 byte argument, a */

/* buffer overflow occurs. */

#include <stdio.h>

#include <strings.h>

int main(int argc, char *argv[])

{

overflow_function(*++argv);

return (0);

}

void overflow_function(char *b)

{

char c[8] = «0»;

strcat(c, b);

return;

}

Данные командной строки из массива argv [1] передаются функции overflow_function, которая сцепляет их с данными восьмибайтового массива символов с. Поскольку в программе размер сцепляемых данных не проверяется, то в результате возможен выход за границы массива c. Gets – еще одна проблематичная функция языка C. Компилятор GNU языка C выдает предупреждающее сообщение при компиляции программ с функцией gets, потому что эта функция никак не контролирует размер получаемых данных. Посмотрите на следующий пример:

/* getsbufo.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* This program demonstrates how NOT */

/* to use the gets function. gets */

/* does not sufficient check input */

/* length, and can result in serious */

/* problems such as buffer overflows. */

#include <stdio.h>

int main

{

get_input;

return (0);

}

void get_input(void)

{

char c[8];

printf(“Enter a string greater than seven bytes: ”);

gets(c);

return;

}

В исходном тексте программы можно найти функцию gets. В результате выполнения функции gets данные входного потока пересылаются в восьмибайтовый массив символов c. Но поскольку эта функция не выполняет никаких проверок на размер обрабатываемых данных, то в результате легко получить ошибку переполнения буфера.

Подробнее с проблемой переполнения буфера можно познакомиться в главе 8.

Ошибки проверки входных данных

Причина других типичных ошибок программирования кроется в недостаточной проверке входных данных программы. В результате уязвимость программы может проявиться при передаче ей различных типов данных, как, например, это происходит с программами Web CGI.

Ошибки проверки входных данных программы могут привести к уязвимостям форматирующей строки. Уязвимость форматирующей строки проявляется при использовании в программе таких спецификаций преобразования, как, например, %i%i%i%i или %n%n%n%, что может привести к неожиданному результату. Подробно форматирующие строки рассмотрены в главе 9.

Но перед этим приведем пример программы с уязвимой форматирующей строкой. Проанализируйте следующую программу:

/* fmtstr.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* December 31, 2001 */

/* fmtstr.c demonstrates a format */

/* string vulnerability. By supplying */

/* format specifiers as arguments, */

/* attackers may read or write to */

/* memory. */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf(*++argv);

return (0);

}

В результате запуска программы и передачи ей на вход форматирующей строки со спецификацией преобразования %n пользователь сможет распечатать содержимое произвольных областей памяти. При распечатке соответствующей области памяти можно запустить программу с привилегиями привилегированного пользователя root.

Проверка программами Web-интерфейса, например CGI-программами, входных данных программы часто приводит к неожиданным результатам. Нередко недостаточно квалифицированно написанные CGI-программы (особенно это касается программ, написанных на языке Perl) позволяют выполнять команды, заключенные

в специальные символы, что дает возможность выполнять произвольные команды системы с привилегиями Web-пользователя. В некоторых случаях это может привести к серьезным последствиям. Например, к удалению файла index.html, если HTTP-процесс является владельцем этого файла и имеет право писать в него данные. Или к предоставлению пользователю локального доступа к системе с разрешениями HTTP-процесса, если пользователь свяжет оболочку shell c произвольным портом системы.

К сходным проблемам может привести предоставленная пользователю возможность выполнять произвольные SQL-команды. Обычно CGI-программы используются для облегчения взаимодействия между внешним Web-интерфейсом и серверной частью системы управления базами данных, поддерживающих SQL, например Oracle, MySQL или Microsoft SQL Server. Пользователь, который может выполнять произвольные SQL-команды, сможет просматривать произвольные таблицы, обрабатывать данные таблиц и даже удалять их.

Посмотрите на вариант вызова функции open:

#!/usr/bin/perl open(“ls $ARGV[0] |”);

Эта функция не проверяет входные данные, переданные программе в $argv [0]. Добавив к входным данным символы точек (..), становится возможным сменить директорию и просмотреть родительский каталог, в котором может храниться важная информация. Более подробное обсуждение ошибок проверки входных данных приведено в главе 7. Соперничество программ за ресурсы

При соперничестве программ за ресурсы часто встречается программная ошибка, получившая название «состояние гонок» (Race Conditions). Проявляется состояние гонок различным образом, например в виде блокирования одним процессом разделяемой области памяти, не позволяя тем самым другому процессу изменить в ней данные, или в виде ошибок одновременной работы нескольких процессов с одним и тем же файлом.

Изучим пример использования функции mktemp, которая часто является источником подобных ошибок:

/* mtmprace.c */

/* Hal Flynn <mrhal@mrhal.com> */

/* mtmprace.c creates a file in the */

/* temporary directory that can be */

/* easily guessed, and exploited */

/* through a symbolic link attack. */

#include <stdio.h>

#include <stdlib.h>

int main

{

char *example;

char *outfile;

char ex[] = “/tmp/exampleXXXXXX”;

example = ex;

mktemp(example);

outfile = fopen(example, “w”);

return (0);

}

В некоторых операционных системах эта программа создает файл во временной директории с предопределенным именем, состоящим из строки символов, в которую входят слово example, пять символов идентификатора процесса и одна буква латинского алфавита. Первый недостаток рассматриваемой программы заключается в том, что между проверкой существования файла и его созданием может возникнуть ошибка «состояние гонок» (Race Conditions), обусловленная соперничеством программ за ресурсы. Второй – в том, что имя файла можно сравнительно легко предсказать, поскольку идентификатор процесса можно определить, а последний символ – это одна из 26 букв английского алфавита. В результате возможна успешная для злоумышленника атака символических связей. Для того чтобы определить, позволяет ли операционная система воспользоваться указанными уязвимостями, достаточно исследовать файлы, созданные программой в директории /tmp. При помощи такой утилиты, как grep, можно исследовать большие программные файлы на наличие в них известных ошибок. Означает ли это, что будут выявлены все уязвимости? К сожалению, нет, но это позволит найти и устранить большинство часто встречающихся ошибок. Единственно надежный способ обеспечения безопасности программного обеспечения – построчный аудит многочисленными независимыми экспертами. И даже после этого уровень безопасности программного обеспечения может быть оценен только как достаточно высокий, без гарантий полной безопасности.

Технологии реинжиниринга

Технологии реинжиниринга в большинстве случаев позволяют с большой точностью определить уязвимости в программе с недоступными исходными текстами. Для реинжиниринга программ существует различный инструментарий, выбор которого определяется используемой операционной системой и предпочтениями исследователя. Но независимо от этого чаще всего применяются одни и те же способы реинжиниринга.

Обычно наиболее целесообразна методика работы «сверху вниз», предполагающая сначала рассмотрение общих случаев, а затем, по мере необходимости, их детализацию. В большинстве случаев это означает первоначальное применение средств мониторинга операционной системы для определения файлов и ресурсов, к которым обращается исследуемая программа. (Исключение из этого правила составляют сетевые программы. При исследовании сетевых программ чаще всего требуется перейти к анализу передаваемых по сети пакетов.)

Поделиться с друзьями: