Защита от хакеров корпоративных сетей
Шрифт:
int isalnum( int c ); checks if it is in A-Z,a-z,0-9
int isalpha( int c ); checks if it is in A-Z,a-z
int __isascii( int c ); checks if it is in 0x00-0x7f
int isdigit( int c ); checks if it is in 0-9
isxdigit( int c ); checks if it is in 0-9, A-FПодобные функции реализованы во многих библиотеках С для UNIX.
Хорошая программа переполнения буфера должна преодолевать фильтрацию входных данных. Для этого создаются специальные программы кодирования входных данных, позволяющие обмануть фильтрацию.
Было проведено много исследований в области создания программного кода полезной нагрузки, состоящего из алфавитно-цифровых символов и младших символов кода ASCII. При возможности реализации этим способом необходимых функциональных возможностей исследования увенчались успехом. В частности, был разработан способ кодирования полезной нагрузки по стандартам MIME (MIME – набор стандартов для передачи мультимедийной информации посредством электронной почты) или командой XOR, выполненной над последовательностью из нескольких байт. Применяемая кодировка позволяет маскировать странную последовательность байтов под программный код полезной нагрузки из ASCII-символов.
Другой способ преодоления проверки входных данных заключается в том, чтобы избежать фильтрации данных. Например, присвоив переменной окружения или переменной сессии двоичную строку программного кода полезной нагрузки, можно сократить число байтов, которые должны удовлетворять условиям проверки входных данных.
Частичное переполнение буфера и искажение данныхВ последнее время значительно увеличилось число программистов, начавших использовать строковые функции с ограничениями, например функцию strncpy вместо strcpy. Этих
Широко известна общая ошибка использования функций с ограничениями, получившая название «минус один», когда максимальная длина записываемой в буфер строки приравнивается размеру буфера. При этом часто забывают об обязательном признаке конца строки – завершающем строку нулевом байте. Некоторые функции с ограничениями могут не включать в строку завершающего символа, позволяя строке незаметно слиться со строкой из рядом расположенного буфера. Если позднее обратиться к ней, то два буфера могут рассматриваться как один, способствуя переполнению буфера.
Рассмотрим пример:[buf1 – 32 bytes \0][buf2 – 32 bytes \0]
После записи в буфер в bufl ровно 32 байтов два буфера выглядят следующим образом:
[buf1 – 32 bytes of data ][buf2 – 32 bytes \0]
Любая последующая попытка переслать из буфера bufl данные может привести к копированию 64-байтной строки данных и переполнению буфера, в который записываются данные.
Другое часто встречающееся неверное использование функций с ограничениями заключается в ошибках программирования или в неправильном расчете контролирующих величин во время выполнения программы. Это может произойти из-за нелепой ошибки или несогласованных изменений в программе в процессе разработки, например в программе был определен буфер фиксированного размера, размер которого не был откорректирован в соответствии с внесенными в программу изменениями. Помните, что размер обрабатываемых данных должен быть согласован с размером буфера получателя информации, а не ее источника. Известны примеры использования в проверках функций strlen, которые во время выполнения программы подсчитывали число байт в буфере, из которого данные копировались. Эта простая ошибка делает бесполезной любую проверку размеров буферов.
Опасно переполнение не только всего стека, но и так называемое частичное переполнение буфера, когда в стеке происходит подмена не всех, а только отдельных сохраненных значений. Месторасположение буфера в стеке и контроль адресов, по которым копируются в буфер данные, могут сделать невозможным запись в буфер такого количества данных, чтобы при переполнении буфера добраться до области хранения в стеке значения регистра EIP и подменить его. В этом случае при помощи команды ret нельзя передать управление нужной программе, но возможность контроля процессора сохраняется. Для этого можно попытаться подменить содержимое регистра EBP или доступные данные в стеке. Позднее этим можно воспользоваться для взятия под свой контроль атакуемой программы, чтобы заставить ее выполнить не предусмотренные в ней действия.
Например, на сайте www.phrack.org была опубликована статья, в которой рассказан способ получения контроля над вызванной функцией путем изменения единственного байта сохраненного в стеке содержимого регистра EBP. Познакомиться со статьей можно по адресу www.phrack.org/show.php?p=55&a=8.
Побочный эффект проявляется при переполнении буфера вблизи вершины стека, рядом с которым сначала находится область сохранения критических данных, а затем содержимое регистра EIP. При подмене этих данных предпочтительнее было бы завершить работу уязвимой программы, чем позволить злоумышленнику воспользоваться ею. Часто после подмены критических данных программа пытается выполниться с поврежденным стеком. Для противодействия подобным атакам переполнения буфера были придуманы, например, системы, защищенные проверочными величинами (canary-protected systems). В этих системах перед командой завершения функции ret проверяется целостность сохраненных в стеке проверочных величин. Если их целостность нарушена, то, как правило, программа завершается. Но и они не гарантируют полной защиты. Если проверочные величины не псевдослучайные величины, то их можно восстановить. При использовании неизменяемых проверочных величин, а для контроля целостности иногда используются и они, можно подменить данные стека при переполнении буфера, но при этом восстановить проверочные величины для обхода проверки.
Перезапись указателя функции в стеке
Иногда программисты сохраняют в стеке указатели функций и затем по мере необходимости используют их. Часто указатели используются там, где требуется динамически изменять часть программы. Машины сценариев (scripting engines; машина сценариев – приложение, способное выполнять сценарии (script), написанные наязыке сценариев, например VBScript или JavaScript) и программы синтаксического анализа часто пользуются этим приемом. Указатель функции – это адрес, по которому будет передано управление командой вызова функции call прямо или косвенно, основываясь на сохраненных в стеке данных. При подмене в стеке указателей можно будет управлять вызовами функций, не влияя на содержимое регистра EIP.
Чтобы воспользоваться указателем функции в стеке, следует вместо подмены содержимого регистра EIP подменить часть стека с сохраненным адресом функции. Подмена указателя вызываемой функции, как и перезапись области хранения содержимого регистра EIP, позволит выполнить нужный программный код. Нужно только выяснить содержимое регистров и написать программу переполнения буфера, что вполне возможно.
Переполнения области динамически распределяемой памяти
До сих пор в главе описывались атаки на буфер памяти, размещенный в стеке. Известны простые способы влияния на работу программы, если ее буфер данных расположен в стеке. Поэтому можно считать, что вопросы переполнения буфера хорошо изучены. Кроме стека, в программе используется еще один тип распределения памяти – область динамически распределяемой памяти («куча»).
Функции malloc- типа HeapAlloc, malloc и new выделяют программе область динамически распределяемой памяти, а функции HeapFree, free и delete освобождают ее. Управляет областью динамически распределяемой памяти компонента операционной системы, известная как менеджер кучи (heap manager), который выделяет динамически распределяемую память процессам, обеспечивая при необходимости увеличение ее размера.
Динамически распределяемая память отличается от памяти стека тем, что это постоянный объект, время жизни которого не ограничено временем выполнения создавшей и использующей его функции. Это означает, что распределенная функцией динамически распределяемая память остается распределенной, пока она не будет явно освобождена. Поэтому переполнение динамически распределяемой памяти может никак не отразиться на работе программы до тех пор, пока она не будет повторно использована. В динамически распределяемой памяти не хранится что-либо похожее на содержимое регистра EIP, но в ней часто хранятся не менее важные вещи.
Подобно сохранению указателей функций в стеке, указатели функции могут быть сохранены в динамически распределяемой памяти.
Разрушение указателя функцииОсновная уловка, применяемая к динамически распределяемой памяти, – разрушение указателя функции. Для этого существует много способов. Для начала можно попробовать подменить один объект из динамически распределяемой памяти на другой из соседней «кучи». Объекты класса и структуры часто хранятся в динамически распределяемой памяти, поэтому такая возможность существует. Например, для этого можно воспользоваться простым для понимания способом, известным под названием «нарушение границы» или «посягательство на объект» (trespassing).
Нарушение границы динамически распределяемой памяти В приведенном ниже примере два объекта класса размещены в динамически распределяемой памяти. При переполнении статического буфера одного из них нарушаются границы соседнего объекта. В результате во втором объекте перезаписывается указатель vtable – указатель таблицы виртуальных функций (virtual-function table pointer). Перезапись указателя виртуальных функций во втором объекте приводит к тому, что он начинает указывать на заранее подготовленный буфер – заготовку Троянской таблицы, куда затем записываются новые адреса функций класса. Один из них – адрес деструктора. Перезапись адреса деструктора приводит к вызову нового деструктора при удалении объекта. Указанным способом можно управлять любой программой по своему усмотрению – достаточно изменить указатель деструктора таким образом, чтобы он указывал на программный код полезной нагрузки. Единственное, что может помешать, – это нулевой указатель в списке адресов объектов динамически распределяемой памяти. Тогда программный код полезной нагрузки должен быть или размещен в области, указатель на которую не равен нулю, или следует воспользоваться одним из ранее изученных способов работы со стеком для загрузки в регистр EIP адреса перехода на нужную программу. Этот способ демонстрируется следующей программой.// class_tres1.cpp : Defines the entry point for the console
// application.
#include <stdio.h>
#include <string.h>
class test1
{
public:
char name[10];
virtual ~test1;
virtual void run;
};
class test2
{
public:
char name[10];
virtual ~test2;
virtual void run;
};
int main(int argc, char* argv[])
{
class test1 *t1 = new class test1;
class test1 *t5 = new class test1;
class test2 *t2 = new class test2;
class test2 *t3 = new class test2;
//////////////////////////////////////
// overwrite t2”s virtual function
// pointer w/ heap address
// 0x00301E54 making the destructor
// appear to be 0x77777777
// and the run function appear to
// be 0x88888888
//////////////////////////////////////
strcpy(t3->name, «\x77\x77\x77\x77\x88\x88\x88\x88XX
XXXXXXXXXX”\ “XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XXXX\x54\x1E\x30\x00");
delete t1;
delete t2; // causes destructor 0x77777777 to be called
delete t3;
return 0;
}
void test1::run
{
}
test1::~test1
{
}
void test2::run
{
puts(“hey”);
}
test2::~test2
{
}На рисунке 8.24 приведены пояснения к примеру. Близость между объектами динамически распределяемой памяти позволяет во время переполнения буфера подменить указатель виртуальных функций соседнего объекта динамически распределяемой памяти. Подмененный указатель начинает указывать на контролируемый буфер с новой таблицей виртуальных функций. При попытке вызова функций класса будут вызываться функции, на которые указывают указатели в новой таблице виртуальных функций. Лучше всего подменить указатель на деструктор класса, поскольку он всегда вызывается при удалении объекта из памяти.
Новаторские принципы построения программного кода полезной нагрузки
Изученные хитроумные способы переполнения буфера дополняют новаторские принципы построения программного кода полезной нагрузки, позволяющие ему успешно выполняться в разных средах. В секции приведены современные сведения о построении программного кода полезной нагрузки, которые позволяют повысить функциональные возможности и гибкость управляющего кода.
Программы переполнения буфера предполагают легкость модификации. Каждая часть программы переполнения буфера, будь то инициализация буфера, выбор точки перехода или другие компоненты программного кода полезной нагрузки, должна быть адаптирована к конкретной ситуации. В конечном счете программа переполнения буфера должна быть оптимизирована для работы в условиях ограниченности доступной памяти, прессинга со стороны систем обнаружения вторжения или проникновения в ядро операционной системы.
Использование того, что у вас есть
Даже простые программы часто загружают в память больше программных модулей, чем им действительно нужно. При установке связи с динамически подключаемой библиотекой программа определяет, когда загружать библиотеку: при запуске программы или во время ее выполнения. К сожалению, при использовании динамически подключаемой библиотеки DLL или совместно используемой библиотеки в системе UNIX в память загружается программный код всей библиотеки, а не только необходимые функции. Это означает, что в программу включается не только необходимый программный код, но и масса дополнительных функций. Современные операционные системы и мощные компьютеры не видят в этом ничего плохого, поскольку лишний программный код никогда не будет выполнен и, следовательно, он не окажет никакого воздействия на работу программы.
Но у злоумышленника другое отношение к дополнительному никогда не выполняющемуся коду. Для него он может оказаться чрезвычайно полезным. Его можно использовать для поиска не только точек перехода, но и уже загруженных в память полезных битов и фрагментов программного кода. При условии частой загрузки динамически подключаемых библиотек можно использовать загруженные неиспользуемые функции.
Статическая компоновка библиотек может уменьшить количество добавляемого в программу выполнимого кода до минимума, но на практике это часто не делается. Подобно библиотекам динамической связи, статические библиотеки обычно содержат большой объем программного кода на все случаи жизни, увеличивая непроизводительные издержки. Поэтому компоновка программы с использованием статических библиотек в большинстве случаев также приводит к избыточному программному коду.
Например, если библиотека kernel32.dll загружена, то можно использовать любую ее функцию, даже не используемую явно программой. Функцию можно использовать, потому что она, как и все другие компоненты библиотеки, уже загружена в память. Другими словами, при установлении связи с любой динамически подключаемой библиотекой DLL загружается гораздо больше программного кода, чем это кажется на первый взгляд.
Другой пример использования имеющегося под рукой кода относится к UNIX-системам. Речь идет о трюке, который использовался исследователями безопасности для преодоления защиты ранних патчей ядра Linux и модификаций ядра в рамках проекта PAX. Впервые этот трюк применила Solar Designer. Он заключался в записи в стек сначала параметров функции execve, а затем подмены хранимого в стеке содержимого регистра EIP на адрес функции execve. Стек оказывался настроен таким же образом, как и при вызове функции execve. По завершении функции команда ret восстанавливала подмененное содержимое регистра EIP и передавала управление на функцию execve. Следовательно, при подозрении взлома защиты выполнения программ из стека можно заблокировать выполнение программ из стека.
Загрузка новых динамически подключаемых библиотек
Наиболее современные операционные системы поддерживают концепцию совместно используемых библиотек. Они предназначены для уменьшения расхода памяти и многократного использования кода. Уже упоминалось о возможности использования в своих интересах программного кода, загруженного в память, но иногда может потребоваться то, что еще не загружено.
Аналогично обычной программе, программный код полезной нагрузки может при необходимости загрузить динамическую библиотеку и использовать ее функции, как это было показано в примере программы переполнения буфера для Windows NT.
В Windows NT есть пара функций, которыми всегда может воспользоваться программа: LoadLibrary и GetProcAddress. Они позволяют загрузить любую динамически подключаемую библиотеку DLL и вызвать функцию. В системе UNIX для этих целей служат функции dlopen и dlsym.
Перечисленные функции делятся на две группы: функции загрузки библиотеки и функции определения адреса экспортируемой функции. Краткое пояснение каждой функции позволит лучше понять их предназначение.
Функции загрузки библиотеки LoadLibrary или dlopen загружают совместно используемую часть кода в доступную программе память. Совсем не обязательно, что загружаемый код будет выполняться, но после загрузки он доступен для использования. В основном загружаемый код впоследствии выполняется.
Функции GetProcAddress и dlsym определяют в таблице функций динамически подключаемой библиотеки адрес экспортируемой функции. Для поиска в таблице функций используются символические имена и, возможно, необязательные порядковые целые числа – индексы. Входным параметром этих функций является имя искомой функции или ее индекс, а выходным – адрес искомой функции.