Чтение онлайн

ЖАНРЫ

Журнал «Компьютерра» № 4 за 31 января 2006 года
Шрифт:

Кстати, развитие скоринга в отечественной банковской практике может несколько притормозиться в результате принятого в 2005 году закона о кредитных историях. По этому документу к 1 сентября 2005 года все российские банки заключили договор с одним из бюро кредитных историй (пока можно выделить четыре крупных учреждения) на передачу данных о «своих» заемщиках и запрос данных о «чужих». Одновременно с этим Центробанк разработал интернет-сервис для доступа к Центральному каталогу кредитных историй, благодаря которому пользователь может ознакомиться с местонахождением своей собственной финансовой биографии. Появление общей базы кредитных историй дает отечественным банкам новые возможности для проверки платежеспособности клиентов, и ряд кредитных учреждений может отказаться в этом случае от автоматизированной оценки.

Обучение системы

Скоринговые системы используют статистические методы работы, а значит, нуждаются в массивах исходных данных

о ранее выданных кредитах (выборке) для выявления зависимостей. Например, для выявления степени влияния семейного положения на возврат кредита. Появляется вопрос, где это исходное информационное «сырье» взять. Можно, конечно, собирать характеристики клиентов, выдавать кредиты всем подряд и потом фиксировать случаи невозврата или несвоевременного возврата. Ну а тем, кто не хочет применять столь радикальный способ обучения на собственных ошибках, приходится искать альтернативные пути решения проблемы. На самом деле, таких путей всего два. Можно воспользоваться уже собранной кем-то другим базой данных или использовать методы, требующие для корректного применения меньших по объему массивов опытных данных. Первый способ свойствен в первую очередь при разработке банками собственных решений. Второй используется вендорами «серийных» систем скоринга. Однако ни один из этих вариантов нельзя назвать идеальным.

Очевидно, что данные о клиентах, например, американского банка мало подойдут для адекватной оценки российских заемщиков. Совершенно другие доходы, уровень жизни, менталитет делают невозможным использование такой БД даже с сильной коррекцией результатов. Классический подход к скорингу[Регрессионный анализ остается самым распространенным методом, использующимся в скоринге] предусматривает принятие положительного решения о выдаче кредита в том случае, если выходной показатель превышает некий критический порог. А выходной показатель вычисляется как сумма численных характеристик параметров (возраст, количество иждивенцев, доход, наличие кредитной карты и т. д.), помноженных на соответствующий «вес» (значимость показателя в общей оценке). Да и само слово «scoring» можно перевести как «подсчет очков». Обучение системы сводится к подгонке «весов». Так вот «веса» одного и того же параметра для США и РФ будут существенно различаться. Кроме того, очевидно, что кредитоспособность заемщика зависит не только от его собственных характеристик, но и от общей макроэкономической ситуации в стране – например, от уровня инфляции. Кстати, бескрайние просторы нашей Родины накладывают дополнительные трудности. Настраивать систему многофилиальному банку приходится для каждого региона отдельно, так как в разных уголках России люди отличаются как доходами, так и менталитетом.

В компании «Франклин & Грант», специалисты которой занимаются созданием математических моделей и их программной реализацией для решения финансовых задач, утверждают, что в России вообще не существует кредитных историй достаточной длины для обучения системы. Что уж говорить о новых типах кредитных продуктов, появляющихся в стране. Например, об ипотеке, собирать данные по которой для настройки системы нужно еще лет десять.

В ХКФБ проблему решили довольно оригинально, использовав для обучения своей системы скоринга базу данных о 4,2 млн. заемщиков из стран Центральной Европы. В этом случае «веса» различных исходных параметров получились достаточно схожими с российскими, и после небольшой коррекции под национальную специфику и текущий банк система стала работоспособной.

Если имеются выборки сравнительно небольшого размера, разумно использовать иные методы анализа, такие как метод ближайших соседей или дерево классификаций. В первом случае новому заемщику, исходя из каких-либо его характеристик, система ставит в соответствие определенную точку с соответствующими координатами. В зависимости от того, каких точек по соседству с данной большинство: «плохих» или «хороших» (которым соответствуют люди, отдавшие или не отдавшие кредит), принимается решение о выдаче денег. При использовании деревьев классификаций система обучается следующим образом. На основе имеющихся данных строится дерево. При построении все известные ситуации обучающей выборки сначала попадают в верхний узел, а потом распределяются по узлам (рис. 1). Критерий разбиения – это различные значения входного фактора.

Скоринг на практике

На сегодняшний день системы скоринга строятся на базе «универсальных» аналитических комплексов (SAS, KXEN), реализуются или в виде отдельных приложений, или как модули многофункциональных банковских комплексов (Invoretail, SOWK). В частности, анализ платежеспособности заемщика применяется в последних версиях системы RS-Loans (компания R-Style Softlab), комплексном решении по автоматизации кредитного бизнеса банков. В такой реализации скоринга есть ощутимое преимущество: ведь оценка уже интегрирована в сам процесс выдачи кредита. RS-Loans, по сути, моделирует от начала до конца бизнес-процесс

кредитования в виде прохождения документов по цепочке «заявка – кредитный комитет – кредитный договор» с использованием нескольких функциональных элементов: «Кредитный договор», «Клиент», «Договор обеспечения», «Объект обеспечения», «Банковская карта», «Счет», «Операции», «График погашения», «Филиал» и т. д.

В системе предусматривается разделение всех пользователей по двум основным должностям. Первая группа – кредитные инспекторы, которые занимаются сбором и оформлением документов, инициализацией операций и т. д. Вторая группа – кредитные бухгалтеры, чьи обязанности ограничиваются бухгалтерским отражением кредитной деятельности. При надобности в систему можно добавить новые должности, наделив их необходимым набором прав. Производительность кредитного отдела система повышает прежде всего за счет наличия процедур массовой обработки договоров: начисления процентов, выноса на просрочку, расчета групп риска, формирования резервов и т. д.

Задача скоринг-функционала – рассчитать максимальный размер кредита, который можно выдать клиенту, базируясь на его анкетных данных. В системе уже есть стандартный набор показателей, который банк-заказчик системы может дополнить собственными. Не секрет, что большинство банков использует собственные критерии оценки заемщика, в том числе довольно экзотичные, тщательно храня в тайне значимость тех или иных факторов для анализа. Иногда «для отвода глаз» в анкете даже присутствуют вопросы, ответы на которые никак не учитываются в ходе анализа. Расчет максимального размера кредита в RS-Loans для разных типов кредитования может рассчитываться по различным критериям. Так, при ипотеке, как правило, применяется схема, согласно которой максимальный размер кредита устанавливается исходя из платежеспособности заемщика и оценочной стоимости покупаемой недвижимости, а окончательная сумма выдаваемого кредита формируется с учетом наименьшего из полученных значений. В RS-Loans включен программный инструментарий для ввода аналогичных правил.

Скоринговые методики в системе имеют несколько вариантов применения. Пусть, например, покупатель желает приобрести в кредит какую-нибудь бытовую технику. При этом он имеет некоторые денежные средства, которые готов вложить. При обращении клиента к сотруднику банка последний вводит в БД информацию о заемщике + данные для скоринговых расчетов. Образец типовой анкеты в виде xls-файла поставляется в банк вместе с системой (см. таблицу). Этот образец служит основой для дальнейшей корректировки под требования конкретного банка – например, для исправления значений баллов за определенные клиентские характеристики или формирования новых шаблонов документов. В зависимости от ответов на вопросы система вычисляет максимальный размер кредита. Дальше бизнес-процесс и действия сотрудника зависят от опций схемы розничного кредитования, с учетом программной и аппаратной специфики банка, наличия выделенных каналов связи и полномочий сотрудника (наличия права подписи, например).

Этот процесс может работать по трем основным сценариям. Первый вариант используется, если в торговом центре («провайдере» услуг потребительского кредитования) есть выделенный канал для стабильной связи с главной БД RS-Loans. В этом случае данные анкеты автоматически загружаются в систему, быстро возвращается информация по платежеспособности клиента, максимальному размеру кредита и сопутствующая отчетность. Допускается введение в схему процедур проверки достоверности указанных заемщиком сведений. На основе полученного отчета сотрудник отказывает в кредите либо заключает договор на определенную сумму. Затем он заносит в систему информацию о своих действиях, подтверждаемых соответствующими документами. Вариант с единой БД и выделенным каналом наиболее удобен, так как в этом случае имеется возможность консолидировать и обрабатывать данные о заемщиках в одном месте или централизованно изменять методики скоринга. Допускается в этом варианте и использование Интернета для заполнения заявки непосредственно в HTML. Недостаток у такой схемы только один – доступ к базе по выделенному каналу не всегда возможен.

Если в торговом центре есть средства связи, но нет выделенного канала, передача данных идет по модему (GPRS– или обычному – неважно). Поскольку терминалы сотрудников, работающих с RS-Loans, могут действовать и через удаленное соединение, схема работы в этом случае практически аналогична предыдущей. По-прежнему будет использоваться единая база данных. Но есть другой вариант. Сотрудник банка может переслать анкетные данные напрямую или через Интернет в режиме безопасного соединения на сервер с БД RS-Loans. Серверный обработчик событий автоматически загрузит базу и сформирует необходимые отчеты и документы для обратной пересылки в торговый центр. Дополнительные сложности появляются в том случае, если прямая связь между местом продажи и главной БД RS-Loans отсутствует. Тогда приходится вести локальную БД клиентов, синхронизировать ее с центральной базой, обновлять и согласовывать «черный список» клиентов.

Поделиться с друзьями: