Чтение онлайн

ЖАНРЫ

Журнал "Компьютерра" №725
Шрифт:

Автор: Юрий Романов

Воспользовавшись любезным приглашением заместителя директора Радиоастрономического института академика НАН Украины А. А. Коноваленко [За что хочу выразить ему благодарность, а также за доброжелательную помощь в подготовке этого материала], я нахожусь на территории крупнейшего в Мире радиотелескопа УТР-2. Игорь Савельевич Фалькович, главный научный сотрудник Радиоастрономического института НАН Украины, доктор ф.-м.н. любезно согласился ответить на ряд вопросов об истории создания и перспективах этого уникального научного инструмента.

Игорь Савельевич, УТР-2 - действительно самый большой в мире радиотелескоп? И что он собой представляет с инженерной точки зрения?

– Это действительно так. Площадь,

занимаемая радиотелескопом на местности - 2 кв. км (!), а эффективная площадь антенны - 150 тысяч кв. м. Можно привести и такую характеристику - суммарная площадь антенн всех остальных радиотелескопов в мире меньше площади антенны УТР-2. Поскольку работа любого радиотелескопа основана на приеме энергии падающего на Землю космического радиоизлучения, то понятно, что величина эффективной площади антенны во многом характеризует возможности инструмента.

С инженерной точки зрения УТР-2 - это антенная решетка, имеющая в плане Т-образную форму. (См. также "толковый словарик" во врезках на с. 24 и 26.) Высокочастотные кабели от приемных диполей сходятся в подземных галереях, протянувшихся вдоль "плеч" решетки, где подключаются к управляемым линиям задержек, при помощи которых вносятся фазовые сдвиги сигнала, требуемые для управления диаграммой направленности телескопа, ширина которой порядка 0,5°. Система управления антенной способна одновременно формировать до пяти "лучей" по обеим координатам, гибко перестраивать конфигурацию антенной решетки.

Кстати говоря, "многолучевость" позволяет эффективно бороться с влиянием атмосферы - когда из-за ионосферных флуктуаций видимое положение наблюдаемого объекта уходит с оси одного из лучей, оно может быть поймано соседним лучом и т. д.

Расскажите немного о том, как практически осуществляется наведение телескопа на объект исследования. Как прицелить обычный телескоп - более или менее понятно, движущиеся чаши радиотелескопов наверняка все видели в телепередачах, но ведь УТР всегда неподвижен…

– Ну, строго говоря, он не неподвижен. Земля вращается, а вместе с ней - и антенна телескопа. Тем самым, можно естественным путем осуществлять непрерывное сканирование некоторой области. Это удобно, поскольку система управления нашего телескопа реализует дискретное изменение положения лучей диаграммы направленности (так уж она сконструирована).

Управление пространственным положением центрального луча диаграммы направленности антенной решетки осуществляется путем введения предварительно рассчитанных фазовых сдвигов (задержек) в сигнальные линии элементов решетки - вибраторов. В результате суммирования сигналов с разными фазами возникает ситуация, при которой на выход поступает с наибольшей амплитудой сигнал, пришедший с направления главного лепестка сформированной диаграммы направленности. Сигналы, приходящие с других направлений, в большей или меньшей степени ослабляются. Надо сказать, что любая антенная решетка всегда имеет кроме главного еще и так называемые боковые лепестки диаграммы направленности, вдоль векторов которых антенна принимает приходящие сигналы и которые в данном случае являются помеховыми. Борьба с боковыми лепестками - задача чрезвычайно сложная и далеко не тривиальная.

Практически наведение телескопа - отработанная и вполне рутинная процедура. Наблюдателю-астрофизику, разумеется, известны небесные координаты того объекта, который он собирается отнаблюдать в отведенное ему по графику время. По этим координатам персональный компьютер в обсерватории вычисляет управляющие слова-сигналы, которые в коде Грея выдаются в блоки коммутации линий задержек. Совокупность задержек (матрица сдвигов фаз), как я уже говорил, определяет текущее положение в пространстве центрального "луча" диаграммы. Наблюдательный эксперимент часто планируется таким образом, чтобы дискретная перестройка диаграммы направленности сочеталась с непрерывным сканированием луча за счет вращения Земли.

Что происходит, когда объект наблюдения пойман? Как происходит процесс наблюдения?

ЭВРИКА!..

Многолетние,
многочисленные и всесторонние исследования антенных решеток (АР) долгое время не давали возможности удовлетворить всем противоречивым требованиям, предъявляемым к ним. Необходимое решение было получено Боэрлингером (Boerlinger). Он предложил размещать элементы АР на многозаходной спирали, координаты элементов которой описываются следующими простыми соотношениями:

радиус-вектор n-го элемента

rn = d√N/π,

где d– параметр, примерно равный среднему расстоянию между соседними элементами, полярный угол n– го элемента

θn = 2πτn,

где τ = (1√5)/2 – так называемое "золотое сечение".

– Процесс наблюдения на радиотелескопе - это, как правило, запись приходящего сигнала. Своего рода, "заготовка сырья". В первые годы эксплуатации телескопа сигнал принимался одновременно на несколько десятков приемников, настройка которых охватывала определенный участок рабочего спектра частот (диапазон УТР-2 составляет 8–35 МГц); детектированный сигнал в виде отсчетов на графиках сохранялся для последующей обработки на ЭВМ в вычислительном центре. Сегодня все значительно упростилось - прогресс цифровой техники!

Цифровые регистраторы и применяемые сегодня цифровые сигнальные процессоры (DSP) обладают таким быстродействием, которое позволяет в реальном времени анализировать сигнал в полосе до 100 МГц при числе эквивалентных каналов до 105. Временное и частотное разрешение при этом - менее 1 мкс и 1 кГц соответственно. А объем информации, который позволяют в реальном времени записать имеющиеся сегодня накопители, таков, что, в принципе, можно писать прямо исходный широкополосный сигнал (так называемая технология прямой регистрации - WFR), а уже потом, без всяких проблем, в офлайне, подвергать его всем необходимым видам цифровой обработки - фильтрации, вычислению спектральной структуры, корреляций и т. п.

Важной характеристикой телескопа, конечно, является разрешающая способность. Какие объекты Вселенной можно рассматривать при помощи УТР-2?

– Давайте определимся с термином "рассматривать". Звезды, пульсары и другие звездоподобные объекты при наблюдении в любой инструмент выглядят точками. Их поверхность или диск увидеть невозможно, однако принять и зафиксировать их излучение в радиодиапазоне наблюдения УТР, разумеется, может. И здесь удается обнаруживать и регистрировать большое число довольно экзотических явлений: например, импульсное, а в некоторых случаях - континуальное декаметровое излучение пульсаров, в том числе отдельные импульсы (вплоть до так называемых гигантских импульсов), обусловленные не до конца еще понятыми процессами во внешней магнитосфере пульсаров.

Удалось, в частности, обнаружить новые источники излучения, ненаблюдаемые на высоких частотах из-за больших значений их спектральных индексов.

Совсем другое дело - большие, протяженные объекты: галактики, остатки взрывов сверхновых звезд, галактические гало, облака межзвездной пыли и ионизированного газа… Здесь в ряде случаев можно строить так называемые карты интенсивности - своего рода "изображение" объекта в радиодиапазоне электромагнитных волн.

Кстати говоря, огромное количество объектов, которыми активно интересуются сегодня астрофизики, не требуют сверхвысоких параметров углового разрешения радиотелескопа. Что это за объекты? Например, ближайшая к нам звезда - наше Солнце. Наблюдение Солнца в радиодиапазоне позволило обнаружить неизвестные ранее тонкие частотно-временные структуры и виды спорадического радиоизлучения: так называемые всплески II, III и IV типов, дрейфующие пары, спайки, S-, V-, J-всплески, дающие новую информацию о солнечной короне и процессах в ней. Очень много интересного удалось узнать, наблюдая радиоизлучение Юпитера…

Поделиться с друзьями: