Чтение онлайн

ЖАНРЫ

Журнал «Вокруг Света» №04 за 2008 год
Шрифт:

В ядрах большинства звезд водород постепенно превращается в гелий. Фото PL/EAST NEWS

Два ядра гелия-3 могут, столкнувшись, образовать крайне неустойчивое ядро бериллия-6 (4 протона + 2 нейтрона), которое мгновенно разваливается на гелий-4 и пару протонов. Другой вариант сложнее: в реакциях гелия-3 и гелия-4 рождаются ядра бериллия и лития с атомным весом 7. Однако, присоединяя еще один протон, они становятся неустойчивыми (помните — все ядра из 8 нуклонов крайне нестабильны) и сразу разваливаются на два ядра гелия-4. В общем, все дороги ведут в Рим.

Итогом любого из этих процессов становится превращение четырех протонов в одно ядро гелия-4. Важно, что масса ядра гелия-4 немного (примерно на 0,7%) меньше массы четырех протонов. Куда исчезает излишек массы? В соответствии все с той же формулой E = mc2 он превращается в энергию. Именно за счет этого, как говорят физики, дефекта

массы и светят звезды. И, что немаловажно, звездный термоядерный реактор умеет сам себя регулировать: если выделяется слишком много энергии, звезда немного расширяется, вещество охлаждается и скорость реакции, которая очень сильно зависит от температуры, снижается. Если же энергии мало, то происходит обратный процесс. В итоге звезда стабильно поддерживает температуру на уровне, соответствующем достаточно низкому темпу реакций. Поэтому звезды (по крайней мере, некоторые из них) живут достаточно долго, чтобы хватило времени для биологической эволюции и появления столь высокоорганизованных существ, как мы с вами.

В конце концов запасы водорода в звезде исчерпываются. Надо двигаться дальше, а мы помним, что это непросто, поскольку не существует стабильных ядер с массой 5 и 8. Но природа находит выход. Вспоминая встречу одноклассников в метро, можно сказать, что хотя случайно столкнуться сразу троим крайне маловероятно, но если встретились двое и какое-то время едут вместе, то шансы, что по пути к ним добавится третий, увеличиваются. Нечто подобное происходит при ядерном горении гелия. В начале две альфа-частицы, сливаясь, образуют неустойчивое ядро бериллия-8. Жизнь его чрезвычайно коротка, 3.10-16 с (это меньше одной миллионной от одной миллиардной секунды), но при достаточно высокой плотности и температуре даже этого крошечного интервала хватает, чтобы иногда в реакцию с бериллием успела вступить еще одна альфа-частица. И — вуаля! — углерод-12 собственной персоной!

Затем уже углерод может захватывать альфа-частицы, давая кислород. Таким образом, два основных элемента, необходимых для появления жизни, рождаются в звездах. Превращение углерода в кислород идет настолько эффективно, что последнего во Вселенной оказывается даже несколько больше углерода. Если бы параметры ядерных частиц были чуть иными, то почти весь углерод «перегорал» бы в кислород, что делало бы жизнь в той форме, которую мы знаем, крайне редкой или даже невозможной. Может быть, в каких-то других вселенных частицы устроены несколько иначе и там углерода мало, но тогда там нет и наблюдателей (по крайней мере, подобных нам).

Ядра, элементы и изотопы

Протоны и нейтроны (собирательно их называют нуклонами) не являются в строгом смысле слова элементарными частицами. Они состоят из трех кварков, накрепко связанных сильным ядерным взаимодействием. Разбить нуклон на отдельные кварки невозможно: требуемой для этого энергии достаточно для рождения новых кварков, которые, объединившись с осколками исходного нуклона, вновь образуют составные частицы. Сильное взаимодействие не полностью замкнуто внутри нуклонов, а действует еще и на небольшом расстоянии от них. Если два нуклона, скажем, протон и нейтрон, сблизятся почти вплотную, ядерные силы свяжут их вместе и появится составное атомное ядро — в данном случае дейтерий (тяжелый водород). Соединяя вместе разное число протонов и нейтронов, можно получить все многообразие ядер, но далеко не каждое из них будет устойчивым. Ядро, в котором слишком много протонов или нейтронов, разваливается на части, даже не успев толком образоваться. Физикам известно более трех тысяч сочетаний протонов и нейтронов, способных хотя бы некоторое время продержаться вместе. Есть ядра, которые живут лишь краткую долю секунды, другие — десятки лет, а есть и такие, что способны ждать своего часа миллиарды лет. И лишь несколько сотен ядер считаются стабильными — их распад никогда не наблюдался. Химики обычно не столь дотошны, как физики, и различают не любые два ядра, а только разные элементы, то есть ядра с разным числом протонов. Собственно, химики вообще в ядро не заглядывают, а изучают лишь поведение электронов, окружающих его в спокойной обстановке. Их число как раз равно числу протонов, что делает атомы электрически нейтральными. Всего на сегодня известно 118 элементов, но только 92 из них обнаружены в природной среде, остальные получены искусственно на ядерных реакторах и ускорителях. Большинство элементов представлено ядрами с разным числом нейтронов. Такие вариации называют изотопами. У некоторых элементов известно до сорока изотопов, при упоминании их различают, указывая число нуклонов в ядре. Например, уран-235 и уран-238 — два изотопа 92-го элемента урана со 143 и 146 нейтронами соответственно. Большинство изотопов каждого элемента (а у некоторых и все) неустойчивы и подвержены радиоактивному распаду. Это делает изотопный состав важным источником информации об истории вещества. Например, по соотношению радиоактивных изотопов и продуктов их распада определяют возраст органических остатков, горных пород, метеоритов и даже некоторых звезд. Впрочем, и соотношение стабильных изотопов тоже может о многом рассказать. Например, климат Земли в далеком прошлом определяют по изотопам кислорода-16 и -18 в отложениях антарктических льдов: молекулы воды с тяжелым изотопом кислорода менее охотно испаряются

с поверхности океана, и их становится больше при теплом климате. Для любых таких изотопных исследований принципиально, чтобы изучаемый образец с момента возникновения не обменивался веществом с окружающей средой.

Игры для взрослых

Одиночные звезды в два раза легче нашего Солнца , останавливаются на этапе синтеза гелия. Более тяжелые звезды производят углерод и кислород, и только самые большие, превосходящие 10 солнечных масс, могут в конце жизни продолжить игру в элементы. После истощения запасов гелия их внутренние области сжимаются, разогреваются, и в них начинается «горение» углерода. Два ядра углерода, соединяясь, дают неон и альфа-частицу. Или натрий и протон. Или магний и нейтрон. Появившиеся протоны и нейтроны тоже не пропадают зря. Они идут в дело, превращая углерод в азот, кислород и, далее, за счет захвата альфа-частиц в неон, кремний, магний и алюминий. Таким образом, нам уже есть из чего сделать впоследствии твердь земную.

После углерода вне очереди начинает «гореть» неон, причем делает он это «неправильным» образом: вместо того, чтобы сразу слиться с каким-нибудь другим ядром и увеличить свою массу, ядра неона под действием особо энергичных гамма-квантов распадаются на кислород и альфа-частицу. А затем получаемые альфа-частицы, взаимодействуя с другими ядрами неона, дают магний. Так что в итоге на два ядра неона возникают одно кислородное и одно магниевое.

После истощения запасов неона ядро звезды становится кислородно-магниевым, оно снова поджимается, температура растет и игра продолжается. Теперь ядра кислорода, попарно сливаясь, превращаются в кремний или серу. Кроме того, появляется немного аргона, кальция, хлора и других элементов.

Следующий на очереди — кремний. Напрямую два ядра кремния слиться не могут — из-за большого заряда слишком велико электрическое отталкивание между ними. Поэтому начинает идти множество разных реакций с участием альфа-частиц. Термин «горение кремния» достаточно условен, поскольку разных каналов реакций в самом деле много. На этой стадии возникают разные элементы вплоть до железа.

Железо (и близкий к нему никель) выделяется из всех элементов тем, что у него максимальная энергия связи. Нуклоны нельзя упаковать эффективнее: и на то, чтобы разбить ядро железа на части, и на то, чтобы создать из него более тяжелые ядра, требуется затратить энергию. Поэтому первое время было непонятно, как может образование элементов в звездах идти дальше железа, и существование во Вселенной тяжелых ядер, как, например, у золота или урана, оставалось совершенно необъяснимым. Подход к объяснению был найден в середине 1950-х годов, когда были предложены сразу два механизма образования в звездах элементов тяжелее железа. Оба они основываются на способности ядер захватывать нейтроны.

Великие медленные короли

Первый из этих механизмов получил название медленного захвата нейтронов, или s-процесса (от англ. slow — «медленный»). Он протекает в конце жизни звезд с массой от 1 до 3 солнечных, когда они достигают стадии красного гиганта. Причем идет этот процесс не в плотном горячем ядре звезды, а в слоях, лежащих выше. У таких относительно легких звезд стадия гиганта имеет большую продолжительность, измеряемую десятками миллионов лет, и этого хватает для существенного преобразования вещества.

Отраженная в названии медлительность s-процесса связана с тем, что он протекает в течение длительного времени при низкой концентрации нейтронов. Однако и небольшое количество нейтронов надо откуда-то брать — никакого запаса этих частиц быть не может. В звездах-гигантах идет несколько видов реакций, в которых выделяются нейтроны. Например, углерод-13, захватив альфа-частицу, превращается в кислород-16, и при этом испускается нейтрон. Свободные нейтроны, поскольку им не мешает кулоновское отталкивание, легко проникают в ядра атомов и увеличивают их массу. Правда, если нейтронов станет слишком много, ядро потеряет устойчивость и развалится на части. Но поскольку свободных нейтронов в красных гигантах немного, у ядра есть время, чтобы относительно безболезненно ассимилировать пришельца, испустив при необходимости электрон. При этом один из нейтронов в ядре становится протоном, и заряд ядра на единицу увеличивается, что соответствует превращению одного элемента в другой — следующий по порядку в таблице Менделеева. Таким путем можно получить очень тяжелые элементы, например свинец и барий. Или технеций. В свое время открытие этого тяжелого и достаточно быстро распадающегося элемента в атмосферах красных гигантов было даже истолковано некоторыми учеными как свидетельство в пользу существования внеземных цивилизаций! На самом же деле он просто выносится из недр на поверхность за счет перемешивания вещества.

Когда жизнь такого красного гиганта подходит к концу, его ядро превращается в плотного белого карлика, а оболочка рассеивается в окружающем пространстве за счет звездного ветра или образования планетарной туманности. Тем самым межзвездная среда пополняется наработанными за время жизни звезды тяжелыми элементами, и постепенно химический состав Галактики эволюционирует за счет звездного нуклеосинтеза. К тому моменту, когда образовалась Солнечная система, этот процесс шел уже 8 миллиардов лет, и около 1% межзвездного вещества успело превратиться в тяжелые элементы, из которых, в частности, сложена наша планета.

Поделиться с друзьями: