Журнал «Вокруг Света» №06 за 1975 год
Шрифт:
Однако есть основания и для скептицизма, и связаны они с трудностью самой проблемы. Насколько они велики, свидетельствует хотя бы такая история. В нашей стране после второй мировой войны был создан Комитет машущего полета Федерации авиационного спорта СССР. Летчики, биологи, инженеры, орнитологи, аэродинамики в содружестве с учеными Института морфологии животных имени А. Н. Северцева — доктором биологических наук Г. С. Шестаковой, кандидатами наук Т. Л. Бородулиной, В. Э. Якоби, И. В. Кокшайским занялись изучением механики полета птиц. За многие годы исследований большой коллектив энтузиастов выявил более десяти ранее неизвестных закономерностей феноменальной подъемной силы машущего крыла. (В частности, выяснилось, почему птицы, потеряв в веере крыла чуть не половину перьев, продолжают благополучно летать.)
Обнаружились любопытные вещи. Оказалось, что поверхность крыла должна быть не гладкой, а, как ни странно, шероховатой и в определенном направлении
В результате солнечным осенним днем 1962 года на одном из подмосковных аэродромов можно было видеть такую картину...
По бетонной дорожке, плавно взмахивая гибкими крыльями девятиметрового размаха, мчался необычный летательный аппарат. Сильная струя воздуха, отбрасываемая машущими крыльями, заставляла никнуть траву по краям дорожки. Набрав скорость 25—30 километров в час, аппарат начал подпрыгивать. А еще через несколько секунд его колеса повисли в воздухе. Аппарат летал над аэродромом недолго, так как программа испытаний была рассчитана только на проверку тяги и подъемной силы. Однако первый же экспериментальный полет показал, что даже при очень небольшой скорости — вдвое меньшей, чем требуется самолету, — махолет с маломощным моторчиком в 18 лошадиных сил легко отрывается от земли.
Спустя полтора года, точнее, 19 апреля 1964 года, на стадионе «Динамо» в Москве были проведены соревнования уже нескольких моделей аппаратов с машущими крыльями. Присутствующие на соревнованиях воочию убедились, что полет на таких аппаратах абсолютно безопасен, так как махолет может садиться при нулевой поступательной скорости. А если вдруг в воздухе откажет двигатель? Это не страшно: махолет плавно спланирует на распластанных крыльях...
Бесспорно, это был успех. Но одновременно стало ясно, что знание нескольких десятков (десятков!) секретов, закономерностей и эффектов машущего полета еще далеко не приблизило к цели — созданию орнитоптера, который мог бы летать на трассах, перевозить пассажиров и груз.
Сколько же еще надо выяснить секретов и закономерностей птичьего полета, чтобы приблизиться к идеалу? Десять, сто, больше? Этого никто не знает, потому что строгой теории машущего полета нет до сих пор... И, как видим, дело тут не в недостатке усердия.
Все же для любого, глубоко изучившего проблему исследователя нет сомнений, что орнитоптер не фантастика. Это вполне осуществимый и весьма перспективный летательный аппарат будущего.
Вероятно, формула крыла орнитоптера не будет в точности повторять формулу крыла птиц — даже подражая, человек не копирует, а творит. Некоторые ученые при этом утверждают, что будущий махолет «...будет полнее отвечать требованиям человеческой практики, чем меньше он будет представлять собой точную копию птиц».
К этому мы еще вернемся. А пока скажем, что, помимо изучения полета птиц, у человека имеется еще один путь решения проблемы машущего полета.
Перспектива энтомоптера
Подавляющее большинство видов живых существ — это насекомые. Их полет — чудо и загадка природы. Так, например, согласно всем законам современной аэродинамики майский жук летать не должен. Однако, ниспровергая всю нынешнюю теорию полета и сбивая с толку специалистов по аэродинамике, это насекомое все же летает. И как! Жук то степенно сидит на земле, то вдруг отрывается от нее, в какое-то мгновение распрямляет крылья — и прямо ввысь по вертикали!
Полет майского жука был темой специального исследования (или, может быть, расследования...). Вот к какому выводу пришел руководитель этих изысканий, американский ученый
Леон Беннет: «Если мы сумеем определить аэродинамику полета майского жука, мы или обнаружим какое-то несовершенство современной теории полета насекомого, или откроем, что майский жук обладает каким-то неизвестным нам способом создания высокой подъемной силы».
Конечно, далеко не все насекомые хорошие воздухоплаватели, не все задают нам столь волнующие загадки. Но всякий раз, когда мы узнаем что-то новое в летательных способностях насекомых, нас охватывает изумление. Вот, скажем, крыло мухи. На первый взгляд это нечто простое, безжизненное. Но давайте приглядимся. Каркас из тончайших полых жилок. Ячейки затянуты прозрачной мембраной. Все вместе напоминает распущенный зонт с материей, натянутой на стальные прутья. Такое строение обеспечивает крылу большую гребную поверхность при минимальной затрате материала и минимальном весе. При всей кажущейся эфемерности конструкция позволяет осе делать от 165 до 247 взмахов в секунду, шмелю — до 233, комнатной мухе — до 300, комару — около 600! Но и это не предел: комары-дергуны и комары-мокрецы делают до 1000 взмахов в секунду. Столь напряженный ритм работы крыльев убедительно говорит об их колоссальной прочности.
Но изумительно не это. Изумительно то, что «простое», «безжизненное» на вид крыло являет собой своего рода аэродинамическую лабораторию
с множеством приборов, которые регистрируют скорость встречного потока воздуха, крутящие моменты, осязают и так далее и тому подобное. А многие из них без лупы и разглядеть-то нельзя... Можно только пожелать, чтобы самолеты будущего располагали комплексом столь же точных, малогабаритных и надежных в работе приборов!В 1937 году в одном из солидных американских журналов появилось сообщение о том, что определенный вид мух способен летать со скоростью до 1554 километров в час. Публикация была воспринята по-разному: одни читатели были ошеломлены сообщением, другие приняли сенсацию восторженно. Но все это длилось недолго — возмущенные физики заявили, что в рамках элементарных законов природы полет мухи со сверхзвуковой скоростью невозможен. Достоверные сведения о скорости полета насекомых далеко не столь сенсационны... Хотя с какой точки зрения посмотреть! То, что бабочка олеандровый бражник покрывает расстояние в 1200 километров менее чем за сутки, может быть, и не слишком впечатляет. Больше изумляет способность стрекозы-дозорщика подолгу сопровождать учебный самолет, летящий со скоростью 144 километра в час. Однако удивление наше возрастет еще больше, если мы сравним не абсолютную, а относительную скорость перемещения самолетов, птиц и насекомых. Первенство в абсолютной скорости держит, разумеется, самолет. Для примера сопоставим полетные характеристики пассажирского лайнера, стрижа и шмеля: соответственно будет 900 километров в час, 100 километров в час, 18 километров в час. Но если сравнить их относительные скорости, то есть подсчитать, сколько раз за единицу времени самолет, стриж и шмель успеют отложить длину своего тела в полете, то выяснится, что относительная скорость больше всего у шмеля и меньше всего у самолета!
Насекомые держат первенство и по экономичности полета, здесь они превосходят даже птиц. Но, пожалуй, самое завидное их свойство — это способность взлетать и садиться где угодно (стартовой площадкой для них может служить даже колышущийся на ветру цветок). Ведь, говоря о несовершенстве современной авиации, мы не упомянули о такой острой проблеме, как растущая протяженность взлетных полос. Чем выше скорость самолета, тем, естественно, длиннее путь его разбега и торможения. В результате за последние тридцать лет протяженность посадочных полос возросла с 700 — 800 метров до 2,5—3 и более километров. Размеры взлетно-посадочных полос, рев двигателей при старте заставляют выносить аэродромы далеко за город, отчего складывается всем известный парадокс, когда на дорогу до аэродрома и с аэродрома времени иной раз уходит больше, чем на сам перелет. (Так, полет от Москвы до Ленинграда составляет лишь треть общего времени, которое тратит пассажир...) Вдобавок размеры взлетно-посадочных полос резко сужают транспортные возможности авиации; тяжелые грузовые самолеты выгоднее легких, но принимать их могут только крупные города.
Но ведь теперь появились самолеты с меняющейся геометрией крыла, благодаря чему вертикальный взлет и посадка, наконец, стали реальностью? Да. Выходит, проблема решена, и тут уже нет смысла завидовать птицам и насекомым? Увы! Проведенные в США исследования показывают, что даже высокосовершенные аппараты вертикального взлета и посадки будут стоить почти вдвое дороже обычных самолетов. Почти столь же высокими окажутся и эксплуатационные расходы.
Так что насекомоподобный аппарат — этномоптер нужен и здесь. (Не могу не привести два примера, которые демонстрируют головокружительные пилотажные способности насекомых: одна из сирфид может неподвижно зависать... спиной вниз; муха хризотоксум кувыркается в воздухе со скоростью один поворот за тысячную долю... секунды!)
Создание энтомоптера — дело абсолютно реальное. Но ему повезло меньше, чем орнитоптеру, — им занимались не так усердно. Об этом стоит пожалеть. Не потому, что секреты насекомых раскрыть легче (хотя, кто знает — крыло насекомого все-таки проще птичьего). И не потому, что через насекомых проще выйти к цели, нет. Ведь небольшие размеры насекомых, их малый вес обусловливают совсем другую аэродинамику, чем та, которая возможна для больших тел, и тут нельзя исходить из закона подобия. И все же сопоставление полета насекомых с полетом птиц и самолетов, единый подход к этой проблеме, вероятно, помогли бы быстрей создать общую теорию машущего полета. Здесь уместно такое сравнение: если бы изучение, скажем, звезд-гигантов велось обособленно от изучения всех других светил, если бы наблюдения сопоставлялись несистематически, то еще вопрос, имели бы мы сегодня общую теорию эволюции звезд...
Сами энтомоптеры, поскольку законы, найденные при изучении насекомых, вряд ли удастся распространить на крупные летательные аппараты, будут скорей всего относительно небольшими. Но в «малой авиации» они, очевидно, смогут сыграть выдающуюся роль, став своего рода «воздушными автомобилями». И какими! Достаточно сказать, что энтомоптер размером с «Волгу» или «Москвич» потратит на перелет от Москвы до Ленинграда всего десять литров бензина... Это, безусловно, мечта, но у нее есть реальное основание.