Журнал «Вокруг Света» № 1 за 2005 года (2772)
Шрифт:
Мы привыкли думать об элементарных частицах (типа электрона) как о точечных объектах. Однако, возможно, первичным является не понятие частицы, а представление о некоей струне – протяженном, неточечном объекте. В этом случае все наблюдаемые частицы – просто колебания этих самых микроскопических струн. Струны бесконечно тонки, но длина их конечна и составляет около 10–35 м. Это ничтожно мало даже по сравнению с размером атомного ядра, так что для многих задач можно считать, что частицы точечные. Но для квантовой теории струнная природа элементарных частиц довольно-таки важна.
Струны бывают открытыми и замкнутыми. Двигаясь в пространствевремени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа – гладкая. Из этого следует одно важное свойство струнной
Струны имеют определенные устойчивые формы колебаний – моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение – все частицы могут быть описаны через один объект – струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех музыкальных тонов – зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.
Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии – обычных штанов, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части штанов. Взаимодействие струн имеет очень естественный геометрический образ – оно связано с процессами разрыва и слияния струн. Соединим два простейших струнных взаимодействия между собой (склеим двое штанов в районе пояса). В результате получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие струны.
В струнной теории, в частности, существует замкнутая струна, соответствующая безмассовому гравитону – частице, переносящей гравитационное взаимодействие. Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.
Все выглядит достаточно просто и заманчиво, однако математические проблемы, с которыми столкнулись физики-теоретики при разработке новой теории, оказались крайне велики. Струны колеблются, двигаются, сливаются и разделяются в своеобразном 10-мерном пространстве, имеющем очень причудливую структуру, и на сегодня ученые не знают точно не только геометрию этого пространства, но и не имеют точных решений уравнений, описывающих поведение струн.
У струн могут быть совершенно произвольные условия на границах. Например, замкнутая струна должна иметь периодичные граничные условия (струна «переходит сама в себя»). У открытых струн бывает два типа граничных условий – первый, когда концы струны могут свободно перемещаться в любую точку пространства, и второй, когда ее концы могут двигаться только по некоторому множеству точек внутри пространства. Это множество точек – многообразие – называется D-браной. Часто после буквы D пишут некоторое целое число, характеризующее число пространственных измерений многообразия.
Струнная теория – это нечто большее, чем просто теория взаимодействия элементарных частиц. Совсем недавно обнаружилась самая тесная связь между разрывами пространства, D3-бранами и черными дырами. И такие сугубо термодинамические характеристики, как температура и энтропия сколлапсировавшей звезды, нашли свое описание на языке суперструн.
Суперструны существуют в 10-мерном пространстве-времени, в то время как мы живем в 4-мерном, то есть воспринимаем различными органами чувств только три пространственные и одну временную координаты. И если суперструны описывают нашу Вселенную, нам необходимо связать между собой эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до очень маленького размера (порядка 10–35 м). Из-за малости этого расстояния оно становится абсолютно незаметным не только для глаза, но и всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу.
Идея сворачивания лишних координат восходит к работе 1921 года Теодора Калуцы и статье 1926 года Оскара Клейна. Описанный выше механизм называют теорией Калуцы–Клейна, или компактификацией. В самой работе Калуцы показано, что если взять общую теорию относительности в 5-мерном пространстве-времени, а затем свернуть одно измерение в окружность, то получится 4-мерное пространство-время с общей теорией относительности
плюс электромагнетизм. Хотя свернутые измерения и малы для прямого обнаружения, тем не менее они имеют глубокий физический смысл.У струн есть еще одно замечательное свойство – они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Замкнутая струна может обернуться вокруг компактного измерения целое число раз. В теории струн для малых размеров дополнительных измерений оборотные моды становятся очень легкими. Это позволяет интерпретировать эти моды как наблюдаемые нами элементарные частицы.
Свойства многообразия КалабиЯу имеют важные приложения к физике низких энергий – к элементарным частицам, которые мы наблюдаем, их массам и квантовым числам, а также к числу поколений частиц. Проблемой является то, что существует огромное множество многообразий Калаби-Яу, и пока неясно, какое из них надо использовать для описания мира, в котором мы живем. В этом плане из одной 10-мерной струнной теории можно получить много четырехмерных теорий, просто меняя вид пространства Калаби-Яу.
Физики возлагают надежды на то, что полная теория струн сможет найти это единственное многообразие Калаби-Яу и объяснить, как Вселенная перешла от 10-мерного пространства, существовавшего в первые мгновения после Большого взрыва, к современному – 4-мерному.
По современным представлениям, квантовое поле является наиболее фундаментальной и универсальной формой материи, лежащей в основе всех ее конкретных проявлений. Понятие поля возникло в физике при отказе от представлений о дальнодействии и мгновенной передачи взаимодействия между частицами и осознании того, что у силы может быть ее материальный переносчик, способный существовать и в отрыве от реального источника силы. Наиболее близким и знакомым нам примером таких полей являются электромагнитные волны. Квантовое поле сегодня рассматривают как единый фундаментальный объект, заменяющий все поля и частицы классической физики. Привычные классические силы, действующие между телами, таким образом, представляют собой вторичные эффекты, возникающие в результате обмена виртуальными частицами – квантами поля данного взаимодействия. Ну а обмен любыми частицами может происходить со скоростью, не превышающей световую, поэтому каждое поле имеет свою скорость распространения по пространству. С математической точки зрения полевое описание крайне удобно, поскольку позволяет каждой точке пространства приписать определенную величину напряженности описываемого поля и таким образом четко определить силу, действующую на пробное точечное тело, помещенное в данную точку пространства в данный момент времени. Но именно такое непрерывное и однородное представление о поле и не позволяло долгие годы объединить между собой ОТО Эйнштейна и квантовую механику, и только уход от точечных объектов и событий, происходящих в сколь угодно малой области пространства, дали ученым надежду в рамках единого подхода описать все возможные явления нашего материального мира.
Величайший парадокс теории суперструн состоит в том, что сама она не является единой. Можно выделить пять различных согласованных суперструнных теорий, известных как тип I, тип IIA, тип IIB, SO(32) и E8 x E8.
В начале последнего десятилетия XX века одним из принципиальных вопросов теоретической физики был вопрос выбора той или иной струнной теории в качестве кандидата на роль Единой теории. И в решении этого фундаментального вопроса в последние годы был достигнут значительный прогресс. Оказалось, что все известные теории суперструн связаны между собой преобразованиями дуальности, открытыми в 1995 году. На основе анализа взаимосвязи разных теорий выдвинута гипотеза, согласно которой все теории суперструн являются специальными случаями единой фундаментальной теории, названной M-теорией. Эта теория живет в 11-мерном пространстве-времени и на больших расстояниях описывает 11-мерную супергравитацию. С открытием дуальности связана третья струнная революция. Первая струнная революция была вызвана изучением амплитуд рассеяния. Вторая струнная революция связана с открытием Грином и Шварцем суперсимметрии.
Пять существующих теорий суперструн кажутся различными с точки зрения слабосвязанной теории, но на самом деле все теории суперструн связаны между собой разнообразными струнными дуальностями. Теории называются дуальными, если они, существенно различаясь в конкретных деталях, тем не менее описывают одну и ту же физическую реальность. Дуальности между различными теориями суперструн являются свидетельством того, что все они являются различными предельными случаями некоторой одной теории, названной М-теорией.