Чтение онлайн

ЖАНРЫ

Журнал «Вокруг Света» №12 за 2009 год
Шрифт:

Кроме обычных джетов с верхней кромки облака иногда срываются вверх так называемые голубые стартеры. Они не поднимаются выше 30 километров. Одни ученые полагают, что это просто разряд молнии, направленный вверх, в область, где давление быстро падает, и потому стартеры расширяются гораздо сильнее обычных молний. Другие считают их недоразвитыми джетами.

Но самый интересный тип голубых джетов назвали гигантскими джетами. Стартуя не очень далеко от поверхности Земли, они достигают 90-километровой высоты. Интерес геофизиков к гигантским джетам под стать их размерам, ведь эти разряды совершают «беспосадочный перелет» из тропосферы прямо в ионосферу. Однако наблюдаются они чрезвычайно редко, и надежно их регистрировали не более дюжины раз. При этом живут они доли секунды, что, в принципе, позволяет заметить их простым глазом.

Теория джетов делает лишь первые шаги. Пока неясно даже, на что похоже это явление. Если по своей природе они близки к светящемуся каналу молнии в стадии развития, то становится понятно, почему рождение джета не связано с молниями: он сам — молния. Но, возможно, более близкой аналогией является разряд внутри грозового

облака, который питает энергией канал молнии. В этом случае понять природу джетов будет еще труднее, поскольку теория таких разрядов находится в начальной стадии развития.

Красным спрайтам посвящено наибольшее число наблюдений и публикаций. Это настоящие поп-звезды среди высотных атмосферных разрядов. Иногда кажется, что интерес к ним столь же перегрет, как и к популярным певцам. Чем же они заслужили такое внимание? Дело, вероятно, в том, что их несложно наблюдать (если, конечно, знать о том, что это возможно). Каждые сутки на земном шаре рождаются десятки тысяч спрайтов, и просто удивительно, что их так долго не замечали.

Спрайты — очень яркие объемные вспышки, возникающие на высоте 70—90 километров и спускающиеся вниз на 30—40 километров, а иногда и больше. В верхней части их ширина достигает порой десятков километров. Это самые объемные из высотных разрядов. Как и эльфы, спрайты состоят в прямом родстве с молниями, но не со всеми. Большинство молний бьет из той части облака, которая заряжена отрицательно (она в среднем расположена ближе к земле). Но 10% молний, достигающих земли, стартуют из области положительного заряда, а так как основная область расположения положительного заряда больше, чем отрицательного, то положительные молнии мощнее. Считается, что именно такие мощные разряды порождают спрайты, вспыхивающие в мезосфере примерно через сотую долю секунды после разряда класса «облако — земля».

Красно-фиолетовый цвет спрайтов, как и у эльфов, связан с атмосферным азотом. Верхняя часть спрайта светится однородно, а вот ниже 70 километров разряд как будто сплетается из каналов толщиной в сотни метров. Их структура — самая интересная для изучения особенности спрайтов. Каналы называют стримерами по аналогии с хорошо известными разрядами-иголочками у острых краев предметов в грозовую погоду и у высоковольтных проводов. Правда, толщина земных стримеров порядка миллиметра, а в спрайтах они в 100 000 раз больше. Пока неясно, почему диаметр стримеров так сильно увеличивается — гораздо быстрее, чем падает с высотой давление воздуха.

Гало — это однородное красновато-фиолетовое свечение на высоте около 80 километров. Причина разряда, видимо, та же, что и у верхней части спрайтов, но в отличие от них гало всегда возникает прямо над вспышкой молнии. Спрайты же позволяют себе вольность находиться где-нибудь сбоку. Существует, видимо, некая связь между спрайтами и гало, но ее механизм пока неясен. Они появляются то вместе, то порознь. Возможно, гало и есть верхняя часть спрайтов, когда напряженности электрического поля не хватило, чтобы разряд распространился в более плотный нижний воздух.

Один из мощных штормов в атмосфере Сатурна. Подобные шторма — источники характерных для молний радиосигналов. Фото: NASA/JPL/SPACE SCIENCE INSTITUTE

Громовержец вне конкуренции?

Среди других планет вспышки молний надежно обнаружены пока только на Юпитере. В 1979 году их впервые зарегистрировала видеокамера межпланетной станции «Вояджер-1». Исследования с «Вояджера-2» и «Галилео» подтвердили эти результаты. По-видимому, эти молнии похожи на межоблачные разряды земного типа. Но обнаружить молнии можно не только по вспышкам. На Земле, например, за грозовой активностью следят по радиоизлучению электрических разрядов. В мощных атмосферах планет-гигантов радиоизлучение распространяется гораздо дальше, чем видимое. Правда, уйти в космос могут только высокочастотные (мегагерцовые) радиоволны, способные преодолеть ионосферу планеты. Первые же добравшиеся до Юпитера аппараты зарегистрировали это характерное излучение, а станция «Кассини», пролетая мимо Юпитера на пути к Сатурну, смогла оценить параметры молний внутри планеты. Похоже, Юпитер не зря назван в честь бога-громовержца, его молнии в тысячи раз превосходят по мощности земные Электрические разряды на планетах ищут не только ради изучения их физических свойств. Существует влиятельная гипотеза, что многие нужные для возникновения жизни молекулы появились под действием молний. Так что они, наряду с подходящей атмосферой, могли быть предпосылками возникновения жизни. Вот почему интерес к молниям так высок и планетное электричество ищут все без исключения межпланетные миссии. К сожалению, однозначный ответ пока есть только для Юпитера. Много надежд связывалось с Титаном, крупным спутником Сатурна. Давление там всего полторы атмосферы, а ветры с высокой скоростью гонят метановые тучи с нужным содержанием капель. Но… молнии так и не обнаружили. Спускаемый аппарат «Гюйгенс» зарегистрировал радиоизлучение в диапазоне 180—11 000 герц, но эти измерения не причисляют к надежным доказательствам. Возможно, это «шумит» ионосфера Титана. На самом Сатурне молний пока не видели, но есть все основания считать, что они там полыхают. Сперва «Вояджеры» обнаружили характерные высокочастотные электромагнитные сигналы, потом станция «Кассини» записала во время шести штормов несколько сотен радиосигналов, очень похожих на излучение земных молний. Правда, потом, в 2006 году, наступило длительное затишье. Лишь в ноябре 2007-го на Сатурне вновь начались грозы, сигналы которых надежно фиксировались крупнейшим в мире декаметровым радиотелескопом УТР-2 (Харьков, Украина). По мощности радиоизлучения молнии Сатурна в 10 тысяч раз

превосходят земные, но увидеть их ни в видимом, ни в инфракрасном диапазоне не удается. Вероятно, они вспыхивают очень глубоко внутри Сатурна. На Уране и Нептуне «Вояджер-1» зафиксировал несколько электромагнитных вспышек, подобных радиосигналам на Сатурне. Скорее всего, молнии сверкают и там, но тоже в плотной газовой утробе планет. После «Вояджера» космические аппараты к Урану и Нептуну не приближались. Так что вся надежда на чувствительность новых радиотелескопов.

Глобальная электрическая цепь

И вот пришла очередь главного героя — земного атмосферного электричества. Через все эти спрайты, джеты, гало в ионосферу течет электрический ток. Но куда он девается дальше? Еще со школы мы знаем, что устойчивый ток возможен только в замкнутом контуре. Ионосферу и землю можно считать проводниками. В одном случае проводимость обеспечивают свободные электроны, возникающие под действием жесткого солнечного излучения, в другом ионы соленой воды, пропитывающей землю. При разрядах ток может протекать и по воздуху, но ведь в остальное время воздух — хороший изолятор. Прямо в чистом поле в любую погоду стоят ничем не защищенные высоковольтные линии электропередач напряжением до 500 000 вольт. Провода находятся на расстоянии всего нескольких метров друг от друга, но не сгорают от короткого замыкания через воздух. Да, воздух — изолятор, но все же не идеальный. Ничтожное количество свободных зарядов в воздухе есть, и этого достаточно, чтобы замкнуть глобальную электрическую цепь (ГЭЦ). ГЭЦ хорошо известна специалистам, но широкой публике пока малознакома. О ней, к сожалению, не говорят на уроках географии, и она не представлена в популярных географических атласах, где прочно обосновались другие глобальные циркуляционные процессы — от магматических до воздушных.

Модель ГЭЦ предложил еще в 1925 году тот самый Чарлз Вильсон, который через 30 лет просил обратить внимание на высотные разряды над облаками (видимо, на спрайты), а его не послушали. Вильсон рассматривал поверхность Земли и ее ионосферу как две огромные обкладки сферического конденсатора. Разность потенциалов между ними составляет 300—400 киловольт. Под действием этого напряжения к земле по воздуху постоянно течет электрический ток силой около 1000 ампер. Эта цифра может показаться внушительной, но ток распределен по всей поверхности планеты, так что на каждый квадратный километр воды или суши приходится всего пара микроампер, а по мощности вся атмосферная цепь сравнима с одной турбиной крупной гидроэлектростанции. Вот почему совершенно несостоятельна идея (восходящая еще к Николе Тесле) использовать атмосферную разность потенциалов для получения энергии.

На этих редчайших кадрах зарегистрировано возникновение и угасание гигантского джета, вспыхнувшего в 300 километрах от места наблюдения. Фото: STEVEN CUMMER/DUCE UNIVERSITY

Слабость атмосферного тока — прямое следствие низкой проводимости воздуха. Но даже столь небольшой в планетарном масштабе ток разрядил бы глобальный атмосферный конденсатор всего за восемь минут, если бы тот постоянно не подзаряжался. Электродвижущей силой, «пламенным мотором», который заряжает ионосферу положительно, а землю — отрицательно, служат грозы. Внутри грозового облака разность потенциалов гораздо выше, чем между ионосферой и землей. Создается она за счет разделения зарядов в теплых и влажных восходящих потоках, которые возникают в атмосфере над нагретой Солнцем земной поверхностью. По еще не вполне ясным причинам самые мелкие водяные капли и ледяные кристаллики заряжаются положительно, а более крупные — отрицательно. Восходящие потоки легко выносят мелкие положительно заряженные частицы на большую высоту, а крупные, проваливаясь под действием своей тяжести, в основном остаются внизу. Разность потенциалов между заряженными областями внутри электризованных облаков может достигать миллионов вольт, а напряженность поля — 2000 В/см. Словно перезаряжаемые Солнцем батарейки, облака питают всю глобальную электрическую цепь. Бьющие из подошвы облака молнии, как правило, несут к земле отрицательный заряд, а сверху положительный стекает в ионосферу, поддерживая разность потенциалов в глобальном атмосферном конденсаторе.

Прямо сейчас над планетой гремит 1500 гроз, каждые сутки небо прочерчивают 4 миллиона молний, ежесекундно — 50. Из космоса хорошо видно, как пульсирует сердце глобальной электрической цепи. Но молнии — это лишь самые заметные проявления ГЭЦ. Они подобны искрящему контакту в розетке, который трещит и вспыхивает, тогда как по проводам электричество течет незаметно. Токи, идущие в ионосферу от заряженных облаков (причем даже не только грозовых, но и от слоистых), сами по себе обычно не порождают зрелищных эффектов, но иногда, под влиянием особенно мощных молний, эта часть ГЭЦ ненадолго визуализируется.

При разряде молнии во все стороны от нее распространяется сильное возмущение электрического поля. В нижних слоях атмосферы, где нет свободных электронов, эта волна не производит никаких эффектов. На высотах более 50 километров немногочисленные имеющиеся в воздухе свободные электроны начинают разгоняться под воздействием импульса электрического поля.

Но плотность воздуха все еще слишком велика, и электроны сталкиваются с атомами, не успевая набрать заметной скорости. Лишь на высотах около 70 километров длина свободного пробега, а с ней и энергия электронов увеличивается настолько, чтобы при столкновениях возбуждать и даже ионизировать атомы и молекулы, отрывая от них новые электроны. Те, в свою очередь, тоже разгоняются, запуская лавинообразный процесс. Волна ионизации движется к земле, проникая во все более плотные слои атмосферы. Ток с нарастанием числа свободных электронов резко усиливается, возбужденных атомов и молекул становится все больше, и вот мы уже видим свечение высотного разряда. Так молнии в нижних слоях атмосферы на короткое время «высвечивают» (и усиливают) токи в ее верхних слоях.

Поделиться с друзьями: