Чтение онлайн

ЖАНРЫ

Звезды: их рождение, жизнь и смерть
Шрифт:

Глава 2 Общие сведения о межзвёздной среде

Звезды, так же как Солнце, Луна и планеты, были известны человеку еще тогда, когда он человеком не был. Я полагаю, что самой примитивной астрономической информацией располагают и животные, причем не только высшие. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды — это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Этого не понимали даже такие выдающиеся мыслители, как Кеплер. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Впрочем, этот вопрос для астрономов XVIII и XIX вв. никогда не представлялся актуальным — круг интересов ученых был тогда совсем не таким, как в наши дни. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX в. немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающееся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Гартман исследовал спектры двойных звезд, у которых по причине орбитального движения длины волн спектральных линий строго периодически меняются

на небольшую величину то в одну, то в другую сторону. Период таких изменений в точности равен периоду орбитального движения одной звезды вокруг другой. Причиной таких периодических изменений длин волн спектральных линий является хорошо известный из лабораторной физики эффект Доплера. Когда источник излучения движется на наблюдателя со скоростью 3, длина волны линии
уменьшается на величину
, где c — скорость света, если же источник удаляется от наблюдателя с той же скоростью, длина волны увеличивается на ту же величину. Представляется очевидным, что звезда, совершающая периодическое движение по своей орбите, будет то приближаться к нам, то удаляться, что и объясняет периодические смещения длин волн линий ее спектра. Открытие немецкого ученого состояло в том, что он обнаружил в спектрах некоторых двойных звезд две линии поглощения, длины волн которых не менялись, в то время как у всех остальных спектральных линий по описанной выше причине длины волн периодически менялись. Эти «неподвижные» линии, принадлежащие ионизованному кальцию, получили название «стационарных». Они образуются не в наружных слоях звезд, а где-то «по пути» между звездой и наблюдателем. Так впервые был обнаружен межзвездный газ, который в проходящем сквозь него звездном свете производит поглощение в узких спектральных участках.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, т. е. состоят из нескольких близко расположенных друг к другу компонент. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся друг относительно друга со скоростью, близкой к 10 км/с. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Тот факт, что впервые межзвездный газ был обнаружен по его поглощению в линиях кальция, конечно, не означает, что последний является там преобладающим по обилию элементом. Межзвездный газ проявляет себя и по другим линиям поглощения, например, по известной желтой линии натрия. Интенсивность линий поглощения далеко не всегда определяется обилием соответствующего химического элемента. В гораздо большей степени она определяется «удачным» расположением энергетических уровней соответствующего атома, переходы между которыми эту линию реализуют. Весьма важно то обстоятельство, что в межзвездном пространстве практически все атомы, ионы и молекулы должны находиться на самом «нижнем», т. е. «невозбужденном» энергетическом уровне. Дело в том, что процессы возбуждения атомов, связанные, как обычно, либо с поглощением излучения, либо со столкновениями между частицами, происходят в межзвездной среде неимоверно редко. Если после рекомбинации электрона с ионом образовавшийся нейтральный атом оказался возбужденным, то он всегда «успеет» спонтанно перейти в самое «глубокое» состояние, излучив один или несколько квантов — никакие процессы столкновения с другими частицами ему это сделать не помешают [ 4 ] .

4

Из этого правила есть одно важное исключение: если энергетические уровни атома или молекулы очень близки к «основному», а радиационные переходы между ними являются «запрещенными», то «населенность» «возбужденных» уровней может быть сравнима с населенностью основного.

Находясь неопределенно долго на «основном» уровне, атом может поглощать излучения на определенных частотах. Наинизшая частота называется «резонансной», а соответствующая спектральная линия — «резонансной» линией. Обычно резонансные линии бывают самыми интенсивными. Спектроскопической особенностью кальция (так же, как и натрия) является то, что его резонансные линии находятся в видимой части спектра. Между тем подавляющее большинство резонансных линий других элементов находится в далекой ультрафиолетовой области. Классическими примерами являются самые обильные элементы космоса — водород и гелий. У водорода длина волны резонансной линии (это знаменитая линия «лайман-альфа») равна 1216 A, а у гелия еще короче — 586 A. Между тем все внеземное излучение с длиной волны более короткой, чем 2900 A, полностью поглощается земной атмосферой. До развития внеатмосферной, ракетной и спутниковой астрономии ультрафиолетовая часть спектра всех космических объектов была совершенно недоступна астрономам. Только сравнительно недавно были получены звездные спектры в дальней ультрафиолетовой области и была зарегистрирована межзвездная линия лайман-альфа, так же как и резонансные линии кислорода (длина волны 1300 A) и других межзвездных атомов. Во избежание недоразумений заметим, что спектральные линии водорода, гелия, кислорода и других элементов издавна наблюдаются в спектрах Солнца и звезд. Однако в этом случае наблюдались не резонансные линии, а линии, возникающие при переходах между возбужденными уровнями. Но в горячих, плотных, наполненных излучением звездных атмосферах «населенности» возбужденных уровней могут быть вполне достаточны для образования линии поглощения, между тем как в межзвездной среде физические условия совершенно другие.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу атмосфер Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как «примеси». Любопытно, что в межзвездном газе кальций примерно в миллион раз менее обилен, чем водород.

Подлинная революция в исследовании межзвездной среды оптическими методами наступила в последние годы в связи с впечатляющими достижениями внеатмосферной астрономии. К настоящему времени (1983 год) наиболее полное исследование химического состава сравнительно близких к нам облаков межзвездного газа было выполнено на американском специализированном астрономическом спутнике, носящем название «Коперник» (см. «Введение»). Как уже говорилось выше, резонансные линии основных (по обилию) элементов находятся, как правило, в ультрафиолетовой части спектра. Наблюдая яркие, сравнительно близкие звезды, можно было в их ультрафиолетовых спектрах обнаружить межзвездные резонансные линии поглощения таких элементов как водород (линия «лайман-альфа» с длиной волны 1216 A), углерод, азот, кислород, магний, кремний, сера, аргон, марганец и др. Наблюдались как линии нейтральных межзвездных атомов, так и их ионов. При этом выявились совершенно реальные различия в химическом составе отдельных облаков и Солнца. Тем самым исследования межзвездной среды поднялись на более высокую ступень: если в первом приближении, основываясь только на весьма ограниченных наземных наблюдениях, можно было считать, что химический состав межзвездного газа более или менее сходен с химическим составом солнечной атмосферы, то теперь уже ясно видны вполне реальные различия состава даже между отдельными облаками. Например, обилие магния, марганца и хлора по отношению к водороду в

облаках межзвездной среды в 4—10 раз меньше, чем в солнечной атмосфере. На рис. 2.1 представлены отклонения химического состава от «солнечного» для четырех различных облаков, проектирующихся на яркие звезды. Этот рисунок дает наглядное представление о различиях в химическом составе различных облаков и Солнца. Мы видим, в частности, что зачерненные прямоугольники располагаются, как правило, ниже горизонтальной прямой, что указывает на «недостачу» соответствующих элементов по сравнению с Солнцем.

Рис. 2.1: Химический состав облаков межзвездного газа.

Наряду с атомами и ионами в межзвездном газе имеются (чаще всего в ничтожном количестве,

10– 7 от обилия атомов водорода) молекулы. Методами оптической астрономии были обнаружены в межзвездной среде простые двухатомные молекулы СН, СН+ (знак «+» означает ионизованную молекулу) и CN. Вместо привычных в лабораторной физике молекулярных спектров, состоящих из очень большого количества линий, сливающихся в полосы, спектры межзвездных молекул, как правило, состоят из одной линии, так как почти все они находятся на самом глубоком электронном, колебательном и вращательном уровне. Исключение составляют межзвездные молекулы CN, у которых почти сорок лет назад были обнаружены две линии. Это означает, что заметную населенность имеет и второй вращательный уровень, который у молекулы CN расположен значительно ближе к первому, чем у молекул СН и СН+. Казалось бы, стоит ли упоминать о такой мелочи? Но лет 15 назад было установлено, что эта «мелочь» имеет очень глубокую причину: второй вращательный уровень молекулы CN возбуждается так называемым «реликтовым» излучением, заполняющим всю Вселенную. Это излучение, как выяснилось, имеет планковский спектр с температурой около 3° абсолютной шкалы Кельвина и представляет собой как бы «остаток» («реликт») древнего состояния Вселенной, когда ее возраст был в десятки тысяч раз меньше, чем теперь, а размеры в 1400 раз меньше! Открытие реликтового излучения — событие огромной важности в астрономии, равное по своему значению открытию красного смещения в спектрах галактик. Удивительно, что косвенным образом это излучение было обнаружено и, увы, не понято за 25 лет до своего открытия! Впрочем, это не является единственным случаем в истории науки. В этой книге мы столкнемся и с другими примерами.

Исключительно важное значение имеет обнаружение в межзвездном газе молекул водорода Н2. Так как резонансная электронная полоса этой молекулы расположена в ультрафиолетовой части спектра около 1092 A, только внеатмосферные астрономические исследования могли решить эту задачу. И здесь пока наиболее ценные сведения были получены на том же спутнике «Коперник» о котором речь шла выше. Специально исследовались ультрафиолетовые спектры от сильно покрасневших звезд, находящихся, следовательно, за плотными газово-пылевыми облаками, особенно сильно поглощающими синюю часть спектра (см. ниже). Именно в таких облаках можно было ожидать измеримого количества молекулярного водорода. Спектрограммы показывают, что у таких звезд линии межзвездного молекулярного водорода очень сильны. Так как одновременно в спектрах тех же звезд измерялась резонансная линия атомного водорода лайман-альфа, оказалось возможным непосредственно измерить отношение обилий молекулярного и атомного водорода в облаках. Это отношение, как выяснилось, меняется в очень широких пределах, от нескольких десятых до значения, меньшего чем 10– 7, определяемого чувствительностью спектрографа к очень слабым линиям.

До сих пор, говоря о межзвездной среде, мы имели в виду только межзвездный газ. Но в этой среде имеется и другая компонента. Речь идет о межзвездной пыли. Мы уже упоминали выше. что еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только около 1930 г. с несомненностью было доказано, что межзвездное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточена в довольно тонком слое около галактической плоскости. Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико. Поэтому межзвездное поглощение сопровождается одновременным покраснением цвета удаленных объектов, находящихся в полосе Млечного Пути. Сама величина поглощения меняется в разных направлениях довольно беспорядочным образом. Есть целые участки неба, где поглощение невелико, есть и такие области в Млечном Пути, где поглощение света достигает огромных размеров. Такие области носят образное название «угольных мешков» (рис. 2.2). Все это означает, что поглощающая свет субстанция распределена в межзвездном пространстве крайне неоднородно, образуя отдельные конденсации или облака.

Рис. 2.2: Фотография «угольного мешка» в созвездии Ориона.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, т. е. твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав (графит, силикаты, «загрязненные» льдинки и пр.). Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени «ориентируются», т. е. направления их вытянутости имеют тенденцию «выстраиваться» в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным, причем степень поляризации (которая коррелируется с покраснением цвета, обусловленным поглощением) достигает 1—2%. Причиной, вызывающей ориентацию пылинок, является наличие в межзвездном пространстве очень слабых магнитных полей. Для того чтобы объяснить наблюдаемую поляризацию света удаленных звезд, необходимо предположить, что величина этого поля порядка 10– 5—10– 6 эрстед. В дальнейшем мы еще не раз будем говорить о межзвездном магнитном поле. Здесь только заметим, что другие, более совершенные методы его измерения подтверждают приведенную выше оценку.

Исключительно важное значение имеет вопрос об ионизации межзвездного газа и связанный с этим вопрос о его температуре. Необходимо, однако, подчеркнуть, что понятие «температура» применительно к межзвездному газу отнюдь не является элементарным. Дело в том, что это понятие, строго говоря, применимо только к телам, находящимся в состоянии термодинамического равновесия. Последнее предполагает одновременное выполнение целого ряда условий. Например, спектральная плотность излучения должна описываться формулой Планка, полная плотность энергии — законом Стефана — Больцмана, согласно которому последняя пропорциональна четвертой степени температуры, распределение скоростей различных атомов, ионов, а также электронов — законом Максвелла, распределение атомов, молекул и ионов по различным квантовым состояниям — формулой Больцмана. Во все эти законы и формулы, как известно, входит важный параметр, имеющий смысл температуры. Например, в распределение скоростей Максвелла входит кинетическая температура, в формулу Больцмана — температура возбуждения и пр. Если тело (или система) находится в состоянии термодинамического равновесия, то все эти параметры — «температуры» должны быть равны друг другу и тогда они называются просто температурой тела.

Поделиться с друзьями: