Звезды: их рождение, жизнь и смерть
Шрифт:
Медленность термоядерных реакций на ядрах водорода объясняется тем, что цепь таких реакций (см. § 8) в качестве необходимых звеньев содержит процесс
происходит из-за
может
Если химический состав звезды, которая должна взорваться, такой же, как у Солнца, то в каждом грамме ее вещества содержится примерно 5
Если мы хотим объяснить катастрофическое выделение энергии при вспышке сверхновой ядерными реакциями (а такие взрывные реакции могут происходить только с ядрами легких элементов), то необходимо предположить, что химический состав недр взорвавшейся звезды должен быть резко отличен от солнечного. Это различие должно выражаться в несравненно большем обилии легких элементов (азот, кислород, углерод, неон) по отношению к водороду, чем на Солнце. Например, если на Солнце на каждую тысячу атомов водорода приходится только один атом какого-нибудь из этих элементов, то у звезды, которая должна взорваться, количество легких атомов должно составлять уже 2—3% от количества атомов водорода. Но эта звезда когда-то образовалась из межзвездной среды, химический состав которой почти такой же, как у солнечной атмосферы. Это означает, что в процессе эволюции химический состав звезды, которая должна взорваться, подвергся благодаря разного рода ядерным реакциям весьма значительному изменению. Это изменение как бы «подготовило» звезду для взрыва, образовав там потенциальный «пороховой погреб», наполненный взрывоопасным ядерным горючим.
При очень высоких температурах, которые неизбежно должны возникнуть, когда пойдут реакции на легких ядрах (речь идет о температуре порядка миллиарда кельвинов), вещество начнет обладать взрывной неустойчивостью по причине очень быстро протекающих реакций типа
и аналогичных реакций для 16О, 20Ne и других легких элементов. Характерное время для таких реакций около 1 с, а удельный выход энергии достигает 5
Таким образом, мы можем сделать вывод, что потенциально возможным ядерным горючим, ответственным за взрывы звезд, может быть только вещество, в высокой степени обогащенное легкими элементами. Обычная космическая «микстура» с химическим составом, подобным солнечному, не может ни при каких обстоятельствах привести к ядерному взрыву звезды. Пока, однако, совершенно открытым остается вопрос, каким же образом реализуется «подготовка» условий, необходимых для ядерного взрыва.
Наконец, остается возможность, что главным источником взрыва звезд является освобождение не ядерной энергии, а гравитационной при катастрофическом сжатии. Скорее всего, имеют значение оба вида энергии, хотя, как мы уже говорили выше,
вся картина взрыва звезды еще далека от ясности. Тем не менее мы все же остановимся на некоторых теоретических разработках, которые, несомненно, будут полезны при создании в будущем (может быть, недалеком) теории взрыва звезд.Английские теоретики Хойл и Фаулер рассмотрели интересную модель звезды накануне ее взрыва («предсверхновая»). Они ограничились вначале случаем сравнительно массивной звезды, M = 30 солнечных масс, причем за время эволюции перемешивания вещества не было. У таких звезд вещество в центральной части невырожденно, так как плотность там сравнительно невелика (см. § 12).
Можно полагать, что эти расчеты имеют отношение к проблеме вспышек сверхновых II типа. На заключительной фазе эволюции температура вещества в центральных областях такой звезды (вернее, модели звезды) очень велика, порядка нескольких миллиардов кельвинов. При такой температуре весь водород и гелий уже выгорели. Ядерные реакции идут очень быстро. Равновесное состояние вещества характеризуется преобладанием ядер элементов группы железа, имеющих минимальное значение «коэффициента упаковки». Ядро такой звезды окружено «мантией», температура которой значительно ниже, например, меньше миллиарда кельвинов. Химический состав этой оболочки резко отличен от химического состава ядра. В «мантии» преобладают легкие элементы — кислород, азот, неон, т.е. потенциальное ядерное горючее, необходимое для взрыва звезды. Наконец, «мантия» окружена самой наружной, водородно-гелиевой оболочкой. По расчетам этой модели масса центрального железного ядра составляет 3 солнечные массы, масса кислородной мантии 15, а все остальное приходится на долю довольно разреженной наружной водородно-гелиевой оболочки.
Условия для ядерного взрыва создаются тогда, когда в процессе эволюции железное ядро начнет катастрофически сжиматься (коллапсировать). Характерное время такого сжатия близко к времени свободного падения и составляет около 1 с. При катастрофическом сжатии ядра нарушается механическое равновесие и остальной части звезды, т. е. вес ее выше лежащих слоев уже не уравновешивается давлением газа снизу, и тогда наружные слои звезды начнут падать по направлению к ее центру. Через небольшой промежуток времени (тоже около секунды) кинетическая энергия падающей оболочки превратится в тепловую, что повлечет за собой быстрый ее нагрев. Тем самым создадутся условия для ядерного взрыва находящихся там легких элементов.
Весьма важным, однако, является то обстоятельство, что катастрофическое сжатие ядра звезды должно произойти за время меньшее, чем то, которое нужно для «спокойной» перестройки оболочкой своей структуры без взрыва. В § 6 довольно подробно уже обсуждали этот вопрос в связи с проблемой нарушения механического равновесия звезды, вызванного мгновенным «местным» выделением некоторого количества энергии. Время «спокойной» перестройки структуры звезды определяется скоростью звука, проходящего через нее. Эта скорость — порядка
(ср. § 6). В нашем случае, при размерах «мантии» звезды 3
Катастрофическим сжатие будет только тогда, когда у ядра имеется «холодильник», отбирающий у него выделяющуюся при сжатии тепловую энергию. Заметим, что мощность такого «холодильника» должна быть исключительно высокой, порядка 1018 эрг/г.
В настоящее время можно указать по крайней мере на два типа таких «холодильников». На первый обратили внимание Хойл и Фаулер. Он сводится к огромному поглощению энергии при диссоциации ядер железа на альфа-частицы и нейтроны. При повышении температуры такой процесс диссоциации неизбежен и будет сопровождаться поглощением огромного количества «скрытой теплоты диссоциации». Из каждого ядра железа получается 13 альфа-частиц и 4 нейтрона. Энергия связи нуклонов в ядре железа равна 8,79 МэВ, в то время как средняя энергия связи одного нуклона в полученной после диссоциации смеси альфа-частиц и нейтронов всего лишь 6,57 МэВ. Следовательно, чтобы разрушить (диссоциировать) железо на альфа-частицы и нейтроны, нужно истратить 2,22 МэВ на нуклон энергии или 2