100 великих научных открытий
Шрифт:
Мендель рассказал о своем открытии 8 марта 1865 г., выступив перед Брюннским обществом естествоиспытателей. Первый в истории доклад о генетике был воспринят более чем прохладно – Грегору не задали ни одного вопроса. Через год его статья «Опыты над растительными гибридами» была напечатана и разослана в 120 университетских библиотек. Кроме того, ученый дополнительно заказал 40 оттисков своей работы и отправил известным ботаникам. Откликов не последовало… Такое непонимание ученый прокомментировал смиренно, как и подобает слуге Божьему: «Мое время еще придет».
В течение шести лет он читал лекции о своих исследованиях, но ни один из слушателей не понял смысла его теории. Никто не подозревал, что имеет дело с работой, которая на заре ХХ в. станет основой целой научной отрасли – генетики.
В
Узнав об этом открытии, американец Уолтер Саттон (1876— 1916) заметил, что хромосомы выглядят как наследственные факторы Менделя. У каждой клетки есть фиксированное число пар хромосом, и каждая хромосома способна передавать наследственные признаки от одной клетки другой. Новый организм образуется от слияния яйцевой материнской клетки и сперматозоида с отцовским набором хромосом. Эти сочетания дают возможность каждому поколению усилить некоторые рецессивные черты и ослабить доминантные. Разные комбинации приводят к изменениям свойств, используемых затем в процессе естественного отбора.
Против хромосомной теории выступил У. Бэтсон, считавший, что эволюция состоит не в изменениях генов под влиянием внешней среды, а лишь в выпадении генов, в накоплении генетических утрат. Однако в 1900 г. законы Менделя были доказаны независимо сразу тремя учеными: Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. За последующие 30 лет учение о наследственности обогатилось колоссальным экспериментальным и теоретическим материалом.
В ХХ в. законы Менделя стали основой для развития биоинформатики и эволюционной генетики, были сделаны многие новые открытия. А генетика стала самой динамичной отраслью естественных наук. Именно поэтому ХХI столетие называют веком Менделя, что и является наивысшим признанием гения ученого.
ДНК и РНК
Во второй половине XIX в. биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, сформулированные Г. Менделем, не получили широкого признания.
Весной 1868 г. молодой швейцарский врач Фридрих Мишер приехал в университет немецкого города Тюбинген, чтобы заняться научной работой и узнать, из каких веществ состоит клетка. Экспериментируя с лейкоцитами, которые легко добываются из гноя, Фридрих отделил ядро от протоплазмы, белков и жиров и обнаружил соединение с большим содержанием фосфора. Эту молекулу он назвал нуклеином – от латинского «нуклеус» (ядро).
Открытое соединение проявляло кислотные свойства, поэтому возник термин «нуклеиновая кислота», а приставка «дезоксирибо-» призвана была сообщать, что молекула содержит водородные группы и сахара. Впоследствии ученые выяснили, что на самом деле это соль, но название решили не менять.
Вскоре стало известно, что нуклеин содержится в хромосомах – компактных структурах, которые возникают в делящихся клетках, – и представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), каждое звено которого сложено четырьмя азотистыми основаниями: аденином, тимином, гуанином и цитозином.
Однако роль дезоксирибонуклеиновой кислоты (ДНК) долгое время оставалась загадкой. Прорыв совершил американский исследователь Освальд Эвери (1877—1955), опытным путем доказавший, что посредством ДНК генетический материал передается от бактерии к бактерии. Ученые поняли – ДНК нужно изучать. Но как?
Одним из тех, кто заинтересовался этой проблемой, был американский биолог Джеймс
Уотсон (р. 1928). Желая исследовать природу гена как можно лучше, он поехал в Европу и на конференции узнал, что британские физики изучают строение молекулы ДНК с помощью рентгена. Направившись в Англию, Уотсон устроился в Кавендишскую лабораторию и там познакомился с физиком Френсисом Криком (1916—2004). Крик увлекся биологией благодаря книге Э. Шрёдингера «Что такое жизнь с точки зрения физики», где высказывалось предположение, что хромосома похожа на кристалл, а «размножение» генов напоминает рост кристалла.В кристалле одна и та же группа атомов повторяется множество раз, а значит, молекула ДНК, непосредственно связанная с геном, должна иметь подобную структуру, – подумали Уотсон и Крик и обратились за помощью к коллегам: физикам Морису Уилкинсу и Розалинде Франклин.
Проведя рентгеноструктурный анализ ДНК, Уилкинс и Франклин обнаружили, что эта молекула представляет собой двойную спираль, напоминающую винтовую лестницу. Тогда Уотсон и Крик решили исследовать химическую структуру нуклеиновых кислот и определили, что те бывают двух типов – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Обе кислоты состоят из моносахарида группы пентоз, фосфата и четырех азотистых оснований: аденина (А), гуанина (Г), цитозина (Ц), тимина (Т) в ДНК и урацила в РНК. Однако в нуклеотид ДНК входит углевод дезоксирибоза, в то время как в нуклеотид РНК – рибоза, у которой, в отличие от дезоксирибозы, есть «лишняя» водородная группа. В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты и в феврале 1953 г. сделали доклад о структуре ДНК. А месяцем позже создали трехмерную модель молекулы из шариков, кусочков картона и проволоки.
Согласно модели Крика—Уотсона, ДНК представляет собой двойную спираль, состоящую из двух цепей дезоксирибозы фосфата, соединенных парами оснований аналогично ступенькам лестницы. Посредством водородных связей аденин соединяется с тимином, а гуанин – с цитозином. По Уотсону и Крику, две части молекулы разъединяются в местах водородных связей, что напоминает расстегивание «молнии», и из каждой половины прежней молекулы синтезируется новая ДНК. Матрицей, образцом для образования молекул служит последовательность оснований. Достаточно «размотать» косичку ДНК, и каждая цепочка сможет достроить на себе новую так, чтобы А склеивался с Т, а Г – с Ц. Из-за того, что размеры пар А-Т и Г-Ц одинаковы, молекула ДНК по структуре в самом деле напоминает кристалл, как предполагали физики. В то же время этот «кристалл» может содержать самые разнообразные сочетания А, Т, Ц, Г, поэтому все гены разные.
Модель Уотсона и Крика объяснила четыре главные функции ДНК: репликацию (копирование) генетического материала, наделение его специфическими чертами, хранение информации в молекуле и ее способность мутировать.
25 апреля 1953 г. ученые опубликовали свое открытие в журнале Nature, а через 10 лет разделили с Уилкинсом Нобелевскую премию по биологии. Открытие химической структуры ДНК было оценено во всем мире как одно из наиболее выдающихся биологических открытий века.
«Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике – открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК – к рождению новой, молекулярной биологии», – пишет М. Франк-Каменецкий, выдающийся генетик, автор книги «Самая главная молекула».
Изучение структуры и биохимии ДНК способствовало созданию методики модификации генома и клонирования. В 1969 г. ученые впервые синтезировали искусственный фермент, в 1971 г. – искусственный ген. В 1978 г. был создан инсулин, практически полностью идентичный человеческому, а потом его ген был внедрен в геном бактерий, превратившихся в «фабрику инсулина». В 1990 г. впервые был опробован метод генной терапии, который позволил спасти жизнь четырехлетней девочке, страдавшей тяжелым расстройством иммунитета. Анализ ДНК нашел широкое применение даже в криминалистике. Он используется во время судебных процессов по признанию отцовства, а также для установления личности преступника.