Чтение онлайн

ЖАНРЫ

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Шрифт:

4 -> 2,667 -> 3,467-> 2,895 -> 3,340 -> …

Сумма подходит к числу все ближе и ближе, а результат скачет все меньше и меньше. Тем не менее этот метод требует более 300 членов, чтобы ответ имел точность в два десятичных знака, так что он практически непригоден для тех, кто желает найти большее число цифр в десятичном разложении числа .

В конце концов с помощью анализа удалось получить другие бесконечные ряды для ,менее симпатичные на вид, но более эффективные для действий с числами. В 1705 году астроном Абрахам Шарп применил такой ряд для вычисления с точностью до 72 десятичных знаков, сокрушив продержавшийся столетие рекорд ван Цейлена, составлявший 35 знаков. Да, это было достойным достижением, но в нем было мало пользы. Решительно нет никаких практических причин для того, чтобы знать число с точностью до 72 знаков, да, впрочем, и до 35 тоже. Инженерам, имеющим дело с прецизионными инструментами, вполне хватает четырех десятичных знаков, а чтобы вычислить длину окружности Земли с

точностью до долей сантиметра, достаточно десяти знаков. Если взять 39 десятичных разрядов, то окажется возможным посчитать длину окружности, охватывающей всю известную нам Вселенную, с точностью порядка радиуса атома водорода. Дело, однако, было вовсе не в практической целесообразности — отнюдь не практические соображения двигали учеными эпохи Просвещения, одержимыми вычислением числа .Цель охоты за цифрами заключалась в самой охоте, это было романтическое приключение. Через год после предпринятых Шарпом усилий Джон Мэчин добился точности в 100 знаков, а в 1717 году француз Тома де Ланьи прибавил к ним еще 27. К началу следующего столетия вперед вырвался Юрий Вега из Словении со своими 140 знаками.

В 1844 году, с головой погрузившись в работу на два месяца, немецкий молниеносный эстрадный вычислитель Захария Дазе отодвинул рекорд вычисления числа до отметки 200 десятичных знаков. Дазе использовал ряд, который хотя на вид и сложнее, чем приведенная выше формула для , но на самом деле гораздо удобнее в употреблении. Во-первых, потому что он сходится к с неплохой скоростью. Точность в два десятичных знака достигается уже после первых девяти членов. Во-вторых, с дробями 1/ 2, 1/ 5и 1/ 8, которые все время появляются в каждом третьем члене, удобно иметь дело. Если записать 1/ 5как 1/ 10, a 1/ 8— как 1/ 2x 1/ 2x 1/ 2, то все необходимые действия с этими членами можно свести к комбинациям удвоения и взятия половины. Дазе выписал справочную таблицу, к которой обращался в ходе вычислений, начиная с 2, 4, 8, 16, 32 и далее по мере надобности. Поскольку он выполнял вычисления числа с точностью до 200 знаков, полученное в самом конце удвоение будет иметь 200 цифр в длину. Это происходит после 667 последовательных удвоений.

Дазе использовал такое разложение:

Отсюда =4(0,825 - 0,0449842 + 0,00632 - …).

Учет одного члена дает 3,3,

учет двух членов — 3,1200

и учет трех — 3,1452.

Дазе недолго почивал на лаврах, поскольку на его рекорд очень скоро нацелились британцы, и по прошествии десяти лет Уильям Резерфорд вычислил с точностью в 440 знаков. Он побуждал своего протеже Уильяма Шэнкса — математика-любителя, который держал школу с пансионом в графстве Дарэм, — не останавливаться на достигнутом. В 1853 году Шэнкс достиг 607 знаков, а в 1874-м — 707. Его рекорд продержался семьдесят лет, пока Д. Ф. Фергюсон из Королевского морского колледжа в Честере не нашел ошибку в вычислениях Шэнкса. Шэнкс сделал ошибку в 527-м знаке, а потому и все последующие тоже были неправильными. Фергюсон провел последний год Второй мировой войны, вычисляя число вручную, и к маю 1945 года достиг 530 знаков. К июлю 1946-го он дошел до 620, и более никто никогда не вычислял с помощью лишь ручки и листа бумаги.

Фергюсон был последним, кто охотился за цифрами вручную, и первым, кто стал делать это, используя технику. Благодаря настольному калькулятору он прибавил почти 200 новых разрядов всего за год, так что в сентябре 1947 года было известно с точностью до 808 десятичных знаков. А затем компьютеры изменили правила игры. Первым компьютером, сразившимся с , был Электронный числовой интегратор и вычислитель ENIAC, построенный в последние годы Второй мировой войны по заказу армии США в Лаборатории баллистики в Мэриленде. Размером он был с небольшой дом. В сентябре 1949 года ENIAC за 70 часов работы вычислил с точностью в 2037 знаков, побив предыдущий рекорд более чем на тысячу десятичных разрядов.

* * *

По мере появления новых знаков в числе становилось все более ясно, что найденные числа не подчиняются никакому очевидному порядку. Однако только в 1767 году математики смогли доказать, что сумбурная последовательность цифр числа никогда не повторяется. Это открытие вытекало из рассмотрения вопроса о том, числом какого типаможет быть .

Числа самого простого типа — натуральные.Это числа для счета, начинающиеся с единицы:

1, 2, 3, 4, 5, 6 …

Натуральные числа, однако, имеют некоторое ограничение, поскольку идут только в одном направлении. Более полезны целые числа, которые состоят из натуральных, нуля и отрицательных натуральных чисел:

… -4, -3, -2, -1, 0, 1, 2, 3, 4 …

Любое положительное или отрицательное целое число от минус бесконечности до плюс бесконечности входит

в целые числа. Если бы нашлась гостиница с неограниченным числом этажей, а также с неограниченным числом все более глубоких подземных уровней, то кнопками в лифте там были бы все целые числа.

Числа другого основного типа — это дроби, которые представляют собой числа, записанные в виде a/ b, где аи b— целые, причем bне равно 0. Поскольку дроби эквивалентны отношениям между целыми числами, они также называются рациональными числами [27] , и их бесконечно много. На самом деле имеется бесконечно много рациональных чисел уже между 0 и 1. Давайте, например, возьмем дробь, числитель которой равен 1, а знаменатель — натуральное число, больше или равное 2. Это дает множество, составленное из

27

«Рациональный» от слова ratio — отношение. ( Примеч. перев.)

Можно пойти дальше и доказать, что имеется бесконечно много рациональных чисел между любыми двумя рациональными числами. Пусть си d —любые два рациональных числа, причем сменьше d.Точка на полпути между си dпредставляет собой рациональное число — оно равно (c + d)/2. Назовем эту точку e.Теперь можно найти точку на полпути между cи e. Это ( c+ e)/2 — рациональное число, которое также лежит между си d.Будем продолжать так до бесконечности, каждый раз разбивая расстояние между си dна все меньшие и меньшие части. Не важно, сколь малым было расстояние между си dв самый первый раз — между ними всегда найдется бесконечно много рациональных чисел.

Поскольку между любыми двумя рациональными числами всегда можно найти бесконечно много рациональных чисел, можно было бы подумать, что каждое число — рациональное. Без сомнения, именно на это одно время и надеялся Пифагор. Его метафизика основывалась на вере в то, что мир состоит из чисел и гармонических пропорций между ними. Существование числа, которое нельзя описать как отношение, по крайней мере сильно ослабляло его позиции, если не прямо им противоречило. Но, к несчастью для Пифагора, имеются числа, которые нельзя выразить в виде дроби, и к его немалому конфузу, одно из них дает его собственная теорема. Если взять квадрат со стороной, равной единице, то длина его диагонали равна квадратному корню из двух, а это число нельзя записать в виде дроби. (Доказательство — в приложении 2 на веб-сайте, посвященном этой книге.)

Числа, которые нельзя записать в виде дроби, называются иррациональными. Согласно легенде, их существование впервые доказал ученик Пифагора Гиппас, что, однако, не подарило ему симпатии Пифагорейского братства: его объявили отступником и утопили в море.

Когда рациональное число записано в виде десятичной дроби, оно всегда или содержит конечный набор цифр, как, например, 1/ 2, которая записывается в виде 0,5, или же разложение рано или поздно начинает повторяться, как, например, для числа 1/ 3, которое записывается в виде 0,3333…, где тройки продолжаются без конца. Иногда число «зацикливается» через более чем одну цифру — так обстоит дело с дробью 1/ 19, которая записывается как 0,0526315789473684210…, где 18-значный период 526315789473684210 повторяется до бесконечности. Наоборот — и в этом-то все дело! — когда число иррационально, его десятичное разложение никогда не будет повторять само себя.

В 1767 году швейцарский математик Иоганн Генрих Ламберт доказал, что — именно такое иррациональное число. Его первоисследователи еще могли надеяться, что вслед за начальным хаосом в 3,14159… сумбур уляжется и наконец-то появится закономерность. Однако открытие Ламберта подтвердило, что это невозможно. Десятичное разложение числа стремится в бесконечность некоторым предопределенным, но с виду совершенно беспорядочным образом.

* * *

Математики, занимавшиеся иррациональностями, страстно желали навести в них какой-то порядок. В XVIII столетии ученые начали размышлять об иррациональностях специального типа, получивших название трансцендентных чисел.То были числа столь таинственные и неуловимые, что получить их в конечной математике было нельзя. Квадратный корень из двух, например, — иррациональное число, но его можно описать как решение уравнения x 2= 2. Трансцендентное же число — это такое иррациональное, которое нельзя описать никаким уравнением с конечным числом членов. Когда концепция трансцендентных чисел впервые стала обсуждаться, никто не знал даже, существуют ли они вообще.

Поделиться с друзьями: