Александр фон Гумбольдт. Вестник Европы
Шрифт:
И Мэран [39] придерживался вначале и исключительно астрономического положения солнца; он обращал особенное внимание на определение maximum и minimum температуры, принимая арифметическое среднее число за среднюю годичную температуру. Вычисление дало ему следующее отношение летней температуры к зимней: 16: 1. Сравнивая, однако, этот результат, полученный вычислением, с наблюдениями и абсолютным нулевым пунктом, найденным Амонтоном, он убедился, что теплота зимняя составляет гораздо более чем 1/16 теплоты летней. Мэран искал причину этого противоречия в теплоте, исходящей из центра земли. К этой-то теплоте, всегда постоянной и играющей главную роль, прибавляется еще солнечная теплота, летом более, зимой – менее. Он сравнивал процесс этот с состоянием вод глубокого озера. Если мы предположим, что данное количество вод его, которое мы примем за постоянно в озере находящееся, зимою увеличивается на известную величину, а летом – эта последняя величина увеличивается еще в 16 раз, то в результате будет колебание уровня озера, но различие отношения глубины его летом к глубине зимой окажется тем незначительнее, чем озеро глубже. Применяя это объяснение к теплоте, Мэран полагал, что отношение ее в различные
39
Жан-Жак де Мэран (Jean-Jacque de Mairan, 1678-1771) – французский геофизик и астроном. Многие годы исследовал влияние Солнца и солнечного света, в т. ч. на биоритмы растений.
Вместо определения температур по методу Галлея и Мэрана, оказавшемуся вскоре неудовлетворительным, К. Майер пытался вывести их иным путем, для чего и дал математическую формулу, из которой оказывается, что теплота изменяется соответственно градусам широты, но остается одной и той же в том же самом градусе широты вокруг всего земного шара, следовательно, под всеми градусами долготы, его пересекающими. Разные корректуры оказались при этом неизбежными для того, чтобы действительно получить температуру данного места по формуле Майера, которая через это очень усложнялась. Так как известно, что чем сложнее формула, тем менее верной оказывается она в приложении, то поэтому формула Майера, хотя и верная сама по себе, вскоре вышла из употребления.
Мы знаем теперь, что распределение теплоты на земном шаре есть результат разнообразнейших причин: различного расстояния Земли от Солнца в разные времена года, вращения Земли и наклонения ее оси к эклиптике; кроме того, сила солнечных лучей зависит от цвета, плотности, лучеиспускания предметов (в рассматриваемом нами случае – местностей), поэтому, кроме астрономических и географических различий мест следует при определении их температуры иметь еще в виду и физические. Как ни трудно, приняв в расчет все эти влияния, определить вперед температуру каждого пункта, как астрономы определяют вперед положение любой планеты, но и это удалось, благодаря трудам Фурье и Пуассона. Но математические формулы, выведенные ими для подобного определения, могут служить только для планеты, которая, как например Луна, не имеет ни воды, ни воздуха. Если же мы имеем дело с такой планетой, как наша Земля, на которой эти два фактора играют такую важную роль, то к вышеуказанным затруднениям присоединяются еще новые, гораздо более крупные, до того запутывающие задачу, что о решении ее при посредстве математики не может быть и речи.
Посредством течений воздуха и воды, вызванных неоднообразным действием солнца под разными градусами широты, теплота от экватора направляется к соседним с полюсами местностям; но распределение ее на этом пути зависит от образования ее поверхности. Поэтому-то температура одного и того же градуса широты различна под разными градусами долготы. Точно так же с парами, подымающимися из океана и моря, из них уносится большое количество теплоты; освободившаяся от нее вода притекает опять путем рек в моря, но теплота способствует возвышению температуры материка. Из этого видно, что не только близость океана оказывает громадное влияние на местность, но даже важны в этом отношении формы линий, образуемых очертаниями берегов как граней между материком и водой.
Сказанного достаточно для того, чтобы убедиться в невозможности включить в математическую формулу тысячи случайностей, влияющих на температуру данного места, и в данное время. К формулам этим можно было прибегать до тех только пор, пока наблюдения не показали, какое влияние оказывают на теплоту данного места упомянутые выше обстоятельства. Поэтому Кирван [40] предложил прежде всего запастись значительным количеством наблюдений и уже из этих наблюдений выводить из сравнения причины явлений или законы их, т.е. приняться за дело в противоположном порядке, чем это делалось до сих пор.
40
Ричард Кирван (Richard Kirwan, 1733-1812) – ирландский химик, метеоролог, геолог, один из последних приверженцев теории существования флогистона (утверждал его идентичность с водородом).
Но каким образом найти среднюю теплоту данного места? Разрешением этого вопроса и задался Гумбольдт в монографии своей Des lignes isothermes et de la distribution de la chaleur sur le globe [1817.1], помещенной в M'emoire de Physique et de Chemie de la Soci'et'e d’Arcueil [41] , III. Температура изменяется, как известно, даже в течение дня постоянно и потому следовало бы наблюдать ее ежечасно и даже чаще, что, конечно, более чем затруднительно. Прежде полагали, что для определения средней температуры года достаточно вывести половину суммы, полученной из максимума и минимума; но метод этот оказался совершенно неверным. Ему предпочли метод, по которому годичная температура получается из среднего арифметического числа всех суточных температур. Но как получить последние? Так как ежеминутное наблюдение невозможно, ежечасное – возможно только в немногих местах, то приходится ограничиться только немногими наблюдениями. Как их выбрать? В какие часы делать? Вопрос этот необыкновенной важности, так как от него зависит правильность результатов. Следя за ходом температуры в течение ясного дня, мы замечаем, что термометр с восходом солнца начинает подниматься и поднятие его около 9 часов утра самое скорое; затем оно становится медленнее и к 2 часам пополудни прекращается, и вместо его замечаем понижение термометра, сначала слабое только, потом до заката все сильнее и сильнее и наконец с восходом термометр начинает вновь подниматься.
41
В 1801 г. на деньги двух самых знаменитых и высоко оплачиваемых ученых Франции и личных друзей Наполеона К. Л. Бертолле и П. С. Лапласа в доме Бертолле в Аркиле было создано научное общество и лаборатория, доступ к которой был открыт молодым ученым.
С 1807 г. Общество получило официальный статус и выпустило первый сборник работ. Работа Общества была нерегулярной и продолжалась до 1813 г. Кроме Гумбольдта учредителями Общества были Био, Араго, Пуассон и пр.Гумбольдт рассматривает три метода, при посредстве которых можно получить среднюю температуру: 1) наблюдая три раза в сутки – при восходе и закате солнца и в 2 часа пополудни; 2) наблюдая в две эпохи, которые выражают maximum и minimum, т. е. при восходе Солнца и в два часа пополудни; 3) наблюдая только раз в течение 24 часов, и именно в тот час, который к сделанным в различные времена года наблюдениям выражает среднюю температуру дня. Мы и на этот раз не вправе входить в изложение критики этих методов, представленных Гумбольдтом, и принуждены ограничиться только результатом его исследований, именно: среднее арифметическое число, полученное из суточных температур, дает годичную температуру; среднее же число, выведенное из многих годичных температур – дает среднюю температуру места.
Если мы, отправляясь из пункта, находящегося у экватора в уровень с морем, будем приближаться к северному полюсу по одному и тому же меридиану, то температура по мере приближения к нему будет все уменьшаться. Линии, соединяющие точки одной и той же годичной температуры разных меридианов, впервые введенные в науку Гумбольдтом, названы им изотермическими.
Применение графической методы к изучению о распределении теплоты на земном шаре оказало науке существенные услуги. Она также важна в этой отрасли физики, как необходимы ландкарты для географического определения места. Благодаря этим линиям Гумбольдту удалось начертить ясную картину распределения теплоты на земной поверхности. Правда, последующие наблюдения несколько изменили очертания некоторых из этих линий, проведенных Гумбольдтом в то время, когда он не располагал еще такой массой наблюдений, которые накопились с тех пор, но ему принадлежит бесспорно не только почин на этом пути, но, как мы увидим ниже, и значительное развитие его.
Отправляясь от экватора, где Гумбольдт принимает среднюю температуру в 27,5° C, к северному полюсу, мы видим, что изотермические линии тянутся довольно параллельно, т. е. температура с увеличивающимися градусами широты уменьшается по всем меридианам почти равномерно; но сравнивая изотермы Европы и Америки, оказывается, что они в последней расположены чаще, иными словами: в ней нам нет надобности подвигаться так далеко к северу, как на европейском берегу океана, чтобы заметить известное понижение температуры. Кроме того, изотермы не расположены параллельно экватору таким образом, что место, лежащее в Европе более к северу, имеет ту же среднюю температуру, как в Америке лежащее южнее, притом разница эта увеличивается более и более по мере приближения к северному полюсу. Полоса, в которой температура при равномерном приближении к северу более всего понижается, лежит, по Гумбольдту, в Старом и Новом Свете, между 40° и 45° широты. Обстоятельство это, замечает он, должно было подействовать благотворно на нравы и промышленную деятельность народов, населяющих эту полосу земного шара. Здесь соприкасаются область возделывания винограда с областью оливкового дерева и лимона. Нигде на земле, подвигаясь от севера к югу, температура так значительно не возвышается, как на этом пространстве; нигде более мы не видим, чтобы произведения царства растительного сменяли друг друга так быстро, как в указанной полосе. Значительное же различие в произведениях смежных стран оживляет торговлю и усиливает промышленную деятельность народов, занимающихся хлебопашеством.
Не останавливаясь на определении кривизны изотермических линий, сделанном Гумбольдтом, упомянем еще, что он нашел тоже, что точки земного шара, представляющие одну и ту же среднюю температуру, могут, несмотря на это, представлять значительное разнообразие между крайними временами года: летом и зимой так, что они изменяются не только от одной изотермы к другой, но даже в пределах одной и той же изотермы. Например, в то время, как в изотерме 20° летняя температура равняется средним числом + 25°,5, зимняя 13,5°, так что разница между обоими временами года составляет 12°, в изотерме 0°, летняя температура = 11,5°, зимняя же – 10° (ниже нуля), так что здесь оба времени года представляют разницу в 21,5°. Изотермы, лежащие между приведенными, занимают середину между ними. Но в изотерме 20° летняя температура не везде однообразна в 25,5°, а колеблется в пределах между 22 и 27 градусами; зимняя – между 12 и 15. В изотерме 0° средняя летняя температура колеблется между 11° и 12°, напротив, зимняя между – 16° – 4° (ниже нуля). Если мы обратим внимание на зимнюю среднюю температуру какой-либо точки, лежащей на любом градусе долготы, то мы на меридианах, к востоку и к западу от нее лежащих, встретим ту же температуру, но эти соответствующие первой по температуре точки не будут находиться ни в той же широте, ни на той же изотерме. То же самое найдем и при наблюдениях над средней температурой лета. Соединение таких точек привело Гумбольдта к определению изотерм и изохимен – линий равной летней, и линий, равной зимней температур. Наблюдения над зимней температурой различных точек в Европе показали значительное уклонение изохимен от изотерм, а также от параллельных кругов. Между тем, как изохимены – если мы проследим их от западного берега Европы к востоку, наклоняются более к югу, чем изотермы, в направлении изотеров мы видим противное. Из этого мы вправе вывести заключение, что чем более мы удаляемся от Атлантического океана, тем значительнее становится разница между временами года. Точки, в которых различие между летом и зимой не так значительно, лежат вообще вблизи берегов; местности же, где различие это достигает самых значительных размеров, лежат внутри материков. На этих данных Гумбольдт и основал свое знаменитое различие между климатом береговым и континентальным.
Не менее труда положил он на определение эпохи года, температуру которой можно без больших погрешностей принять за представительницу средней температуры года. Для этой цели он предложил, на основании обширных наблюдений, октябрь месяц, принимая, конечно, разные числа его для разных местностей.
Вопрос – изменяется ли найденная в течение одного года температура в известном месте против температуры других годов, тоже обратил на себя внимание Гумбольдта. Если она изменяется, то естественно, что самые точные наблюдения ее в течение одного года будут недостаточны для определения средней температуры места. Сделанный Гумбольдтом анализ хода температуры в Париже за 10 лет (с 1803 по 1813 гг.) показал, что он не представляет значительных колебаний между отдельными годами; кроме того, он при этом еще более убедился, что средняя температура октября месяца, температуру которого он предложил, как мы видели выше, за среднюю годичную, действительно отличается только незначительно (на 0,2°) от средней годичной, найденной наблюдением.