Чтение онлайн

ЖАНРЫ

Александр фон Гумбольдт. Вестник Европы
Шрифт:

Изложенные законы распределения теплоты, впервые благодаря Гумбольдту явившиеся в такой наглядной форме, были выведены им только для северного полушария.

Все мореплаватели, предпринимавшие путешествия, начиная с XVI столетия, в особенности же Кук, в южное полушарие единогласно утверждают, что теплота его гораздо ниже теплоты северного полушария под соответствующими градусами широты. Так, напр. в Огненной земле, соответствующей по своему положению в северном полушарии южной Швеции, вся страна покрыта, даже в середине лета, снегом. Неизмеримые пространства льда, как это доказано путешествиями к южному полюсу, окружают его на гораздо большее расстояние от полюса, чем у северного. Этот не подлежащий сомнению факт Эпинус старался объяснить тем, что, так как земной шар движется вокруг Солнца не по окружности круга, а по эллипсу, то он подвигается не с одинаковой скоростью на всех точках своего пути. Вследствие этого лето наше [42] длится несколько дольше, чем зима, между тем как на южном полушарии видим противоположное. Этой разницей в продолжительности времен года Эпинус и объяснял разницу теплоты обоих полушарий. Но уже Ламберт возражал на это, что хотя факт большей продолжительности нашего лета и справедлив, но

так как в продолжение нашего лета Земля отстоит от Солнца на большее расстояние, нежели во время лета южного полушария, то разницы в сумме падающих на каждое полушарие лучей не существует. Ламберт искал поэтому причину разницы температуры обоих полушарий не в Солнце и не в пути Земли вокруг его, но в физическом различии обоих полушарий.

42

Лето и весна вместе длятся 7 суток и 18 часов дольше. – Прим. авт. ст.

Против этого объяснения Кирван заметил, что все путешествия к высоким широтам южного полушария были совершены в теплое время его, т. е. во время нашей зимы, но из температуры крайних времен года нельзя еще выводить заключения насчет температур остальных времен года, равно как и насчет средней температуры целого года. Хотя лето южного полушария и представляет очень незначительную температуру, зато и зима там далеко не так сурова, как наша. Сравнение температур обоих полушарий, под соответствующими градусами широты, конечно, показывает, что она в северном несколько выше, но разница эта весьма незначительна. Кирван полагал, что до 40° широты температура южного полушария относится к теплоте северного, как 13,5 к 14; от 40 же градусов выше до 50 – как 9 к 11.

Этого же мнения был и Гумбольдт. Он говорит, что хотя оба полушария получают одинаковое количество солнечных лучей, но накопление теплоты на южном полушарии меньше вследствие большего лучеиспускания теплорода в течение более продолжительной зимы. Кроме того, так как в южном полушарии вода занимает гораздо большее пространство, чем материк, то пирамидально выдающиеся оконечности континентов этого полушария отличаются континентальным климатом. Лето с незначительной температурой сменяется до 50° южной широты несильными морозами во время зимы; даже растительные формы жаркой полосы встречаются еще у 38° и даже у 42° южной широты. Незначительность встречающихся в южном полушарии материков способствует не только тому, что температура разных времен года не представляет очень резких отличий, но также и абсолютному понижению средней годичной температуры этого полушария.

Гумбольдт утверждает, что эта причина гораздо важнее, нежели та, которую долгое время принимали до него, т. е. нежели незначительная эксцентричность планетного пути. Материки испускают в течение лета гораздо более тепла, чем моря, и воздух экваториальных стран и умеренного пояса, направляющийся к странам, лежащим у полюса, оказывает более слабое влияние в южном полушарии, чем в северном. Доказательством справедливости этого мнения может служить и то обстоятельство, что льды, окружающие южный полюс до 71° и даже 68° южной широты, в тех именно местах подвигаются ближе к экватору, где они встречают открытое море, т. е. там, где пирамидально-выдающиеся оконечности континентов своим влиянием не мешают их развитию. Из этого обстоятельства мы вправе тоже заключить, что эта сравнительная бедность материков южного полушария оказала бы еще гораздо более сильное влияние на температуру его, если бы развитие континентов у экватора было также неравномерно, как и в умеренной полосе.

Исследования Гумбольдта над пассатными ветрами подтвердили тоже его гипотезу, что недостаточное развитие материков в южном полушарии составляет главную причину меньшей теплоты его.

Гумбольдт не упустил из виду и исследования воздуха, находящегося над большими пространствами воды, над морями. Он говорит, что нижние слои атмосферы, находящиеся над большими пространствами воды, испытывают влияние температуры последней. Море гораздо меньше испускает поглощенную им теплоту, чем материки; оно охлаждает покоящийся на поверхности своей воздух посредством испарений. Охладевшие и сделавшиеся более тяжелыми частицы воды опускаются вниз. Море нагревается или охлаждается течениями, направленными от экватора к полюсу, или посредством смешения верхних и нижних слоев воды на покатостях отмелей. Вследствие сочетаний этих различных причин между поворотными кругами, и может быть даже до 30° широты, средняя температура воздуха над морем ниже на 2-3 градуса против континентального. Под высокими же широтами, напротив, в тех странах, где атмосфера зимой понижается значительно ниже точки замерзания, изотермические линии направляются к полюсу и делаются выгнутыми, когда идут от материков через моря. Таким образом, температура воздуха над морями бывает то выше, то ниже находящейся над материками; между тем колебания температуры воды постоянно ниже, чем изменения температуры находящегося над ней воздуха.

Но температура воздуха изменяется не только с переменой места наблюдений в горизонтальном направлении; она изменяется и в вертикальном направлении. С поднятием вверх она понижается. Гумбольдт в разных мемуарах своих принимает три причины этого явления: ослабление действия Cолнца, лучеиспускания теплорода и подымающиеся вверх течения воздуха. Солнечные лучи, обусловливающие возвышение температуры, проходя через атмосферу, способствуют, как известно, нагреванию воздуха. Чем больше частиц воздуха лучи встречают на своем пути, тем большее количество их нагревается, а так как воздух в нижних слоях своих плотнее чем в высших, то естественно, что внизу нагревание будет сильнее, так как внизу больше частиц нагревается по той простой причине, что там их гораздо больше. Но по мере нагревания воздуха лучами, последние, теряя свою теплоту, ослабляются и в действии своем. Поэтому нижние слои воздуха получают меньше теплорода чем верхние – лучи, их проходящие, не суть уже лучи первоначальные, так сказать – из первых рук; они уже потеряли часть своего теплорода в верхних слоях воздуха. Несмотря, однако, на то, что нижние слои атмосферы потеряли на количестве, зато они выиграли на качестве, ибо лучи тут проходят через более плотные слои атмосферы. Таким образом, несмотря на ослабление теплоты лучей во время прохождения их через верхние слои атмосферы, нижние слои все-таки остаются в выигрыше, так как в них накопляется большее количество теплорода вследствие большей плотности нижних слоев воздуха.

Переходим ко второй причине, указываемой Гумбольдтом, почему

верхние слои воздуха холоднее нижних. Каждое нагретое тело, и в том числе и земной шар, испускает из себя по всем направлениям теплоту. Лучи теплорода, исходя от поверхности земли, должны опять проходить через слои воздуха. Проходя сперва через слои более плотные – ближайшие земле, а затем уже через менее плотные – более от нее отдаленные, лучи эти, конечно, нагревают первые слои гораздо сильнее: во-первых потому, что они более плотные, во-вторых потому, что они лежат ближе к источнику, испускающему теплород. Таким образом и лучеиспускание теплорода землей обусловливает высшую температуру в нижних слоях атмосферы, чем в верхних.

Наконец, укажем на третью причину, приводимую Гумбольдтом. Нижние слои воздуха, как более теплые, расширяясь, подымаются конечно кверху. Слои воздуха различной температуры, поднимаясь кверху, обнаруживают известное из физики стремление сгладить разные степени теплоты; но течения эти, ими обусловливаясь, усиливаются вместе с увеличением их различия, так что мы имеем право заключить, что чем сильнее течения воздуха, тем больше разница температуры между слоями его вверху и внизу.

В своих Observations astronomique [1810.2] Гумбольдт разбирает и методы, при посредстве которых можно исследовать уменьшение температуры по мере поднятия кверху. Сюда относятся: воздушные путешествия, восхождение на крутые, уединенные горы, сравнение температур близлежащих, но отличающихся значительной разницей в вертикальном направлении точек; температуры ключей и пещер; границы снегов. Последняя, как мы уже видели выше, не представляет верных результатов, так как она под различными широтами соответствует различным годичным температурам. Результатом наблюдений Гумбольдта по рассматриваемому вопросу можно принять правило, что температура в странах тропических, равно как и в умеренном поясе, в течение лета понижается на 1° на каждые 180– 200 метров поднятия вверх. Зимой в умеренном поясе уменьшение температуры совершается медленнее: можно принять, что разница на 1° замечается не меньше, как на каждые 240 метров поднятия. Указав на эти общие числа, мы не станем приводить средних чисел теплоты, определенных Гумбольдтом для различных высот тропического и умеренного пояса; равно мы принуждены ограничиться только замечанием, что в монографии своей Sur la limite inf'erieure des neiges [1820.1] Гумбольдт подробно определяет высоты снежных границ разных точек земного шара.

От этих исследований температуры воздуха под различными градусами широты и на различных высотах над поверхностью моря Гумбольдт переходит к исследованию температуры почвы. Главным средством для определения ее ему служат наблюдения над температурой ключей, сделанные им самим, Л. фон Бухом и Валенбергом. На основании их он пришел к тому же результату, что под тропиками и в более теплых местностях умеренного пояса температура почвы немногим отличается от средней температуры воздуха; под высшими градусами широты она несколько выше последней.

Гумбольдт и Эме Бонплан на Ориноко. Гравюра на дереве по картине Фердинанда Келлера 1877 г.

Обстоятельство, что в двух первых местностях не замечается почти никакой разницы между температурами обоих сред, и было причиной, почему Гумбольдт, как мы видели выше, считал температуру ключей и пещер в числе средств, при помощи которых может быть определена температура воздуха.

Десять лет спустя после этих исследований Гумбольдт обращает свою деятельность на объяснение главных причин различия температур на земном шаре. Тут он указывает, как различие климатов может зависеть от положения данного места относительно солнца как главного источника теплорода, но это объяснение не удовлетворяет его по причинам, изложенным нами выше при рассмотрении взглядов Галлея и Мэрана. Поэтому он ищет причины, почему западные части материков теплее восточных, и находит ее в преобладании западных ветров в поясах умеренном и холодном. Ветры эти уносят с собой тот же воздух, который принесли пассатные ветры к экватору, а вращение Земли дает возвращающемуся от экватора воздуху направление от запада к востоку, точно также как оно притекавшему к нему воздуху давало противоположное направление. Но воздух, текущий от экватора, тепел, и потому страны, с которыми он прежде всего приходит в соприкосновение, нагреваются сильнее, чем те, по которым он проносится после, так как он отдал уже часть своего тепла первым. Гумбольдт объясняет значительную, сравнительно с ее географической широтой, теплоту Европы ее положением, так близким к морю и разорванности, если можно так выразиться, частей ее. На западе Европы находится большой, так значительно умеряющий холод, и притом согретый Гольфстримом, океан. Часть земного шара, занимающая самое большое пространство тропического пояса, Азия, лежит относительно Европы так, что последняя нагревается воздухом, который поднимаясь над Африкой, направляется от экватора к северному полюсу. Третью причину, умеряющую климат Европы, Гумбольдт видит в том обстоятельстве, что она менее, чем Азия и Америка, выдвигается к северу и что она лежит против самого громадного незамерзающего залива из всех, лежащих у полюсов.

VI

Изучение атмосферного давления

Обращаясь к совершенно другой отрасли естествознания, к давлению воздуха, мы и здесь встречаем следы деятельности Гумбольдта. При тех сбивчивых понятиях, которые имели древние на счет тяжести, нелегко было решить вопрос – давит ли воздух или нет? Аристотель утверждал, что давит, так как, говорит он, воздухом наполненный пузырь весит больше, чем пустой. Но положение это не осталось без возражений: уже Птолемей утверждал, что воздух внутри собственного пространства, т. е. воздух в пространстве, наполненном воздухом, не давит, точно также как и вода при подобных же условиях, т. е. в пределах занимаемого ею пространства, не оказывает давления. Положение свое относительно воздуха Птолемей доказывал тем, что опыт Аристотеля с пузырем неверен; а относительно воды тем, что опускаясь на дно реки, мы не чувствуем давления сверху, как бы ни глубок был слой воды, лежащий над водолазом. Спор этот, длящийся в продолжение средних веков, можно было бы, конечно, решить и известным уже древним законом Архимеда, по которому всякое тело, взвешенное в жидкости, теряет столько своего веса, сколько весит равный объем этой жидкости. Применяя этот закон к взвешиванию Аристотелем воздуха, можно было убедиться, что воздух, взвешенный в воздухе, должен столько потерять своего веса, сколько сам весит, т. е. все.

Поделиться с друзьями: