Алгоритмы развития
Шрифт:
Этот пример достаточно поучителен. Он показывает, что организация системы обладает пороговыми состояниями, переход через которые ведет к резкому качественному изменению протекающих в ней процессов, к изменению самой ее организации. Более того, в этом и аналогичных случаях переход от старой организации системы к новой неоднозначен, т. е. возможно целое множество различных новых форм организации. Поясним это более простым примером решения задачи Эйлера о нагруженной колонне. После того как вертикальная форма равновесия колонны потеряет устойчивость, возникает целый континуум новых форм равновесия – они заполняют поверхность вращения, образующая которой представляет собой полуволну синусоиды. Смена форм равновесия происходит тогда, когда нагрузка на колонну превзойдет некоторое критическое значение. Что особенно важно в описанной ситуации – так
Вот эта неопределенность будущего и есть главная особенность рассматриваемого типа механизмов. Она есть следствие того, что будущее состояние системы при переходе ее характеристик через критическое (или пороговое) значение определяется прежде всего флюктуациями. А они присутствуют всегда. И то, около какого из континуума возможных состояний равновесия будет колебаться колонна при закритических величинах нагрузки, зависит от непредсказуемого порыва ветра! То же мы видим и в примере смены ламинарного течения жидкости турбулентным: мы лишены возможности предсказывать какие-либо детали турбулентности, хотя в условиях ламинарного течения мы точно знаем траектории всех жидких частиц. Мы не можем определить, как возникло данное турбулентное состояние потока, какое состояние предшествовало наблюдаемому. Можно сказать, что система не «помнит своего прошлого», если она испытала в своем развитии бифуркацию, т. е. разветвление путей эволюции при переходе через пороговое состояние своей организации.
Пороговые (или бифуркационные) механизмы свойственны не только миру «косной» материи. Но их проявление в процессах биологической и общественной природы значительно более сложное. Вот почему, выбирая иллюстративные примеры, характеризующие их особенности, я следовал такому высказыванию В. И. Вернадского: «Поэтому вполне позволительно и удобно воспользоваться и здесь (т. е. в биологии. – Н. М.) аналогией между живым веществом и газовой массой»7.
Рассуждения о механизмах, которые были приведены выше, разумеется, достаточно условны и схематичны. Реальные процессы развития – это всегда целая гамма различных механизмов. Тем не менее приведенные рассуждения достаточно наглядны, чтобы можно было представить себе основные черты единого процесса развития.
Законы физики, химии и другие принципы отбора устанавливают определенные границы изменения состояний системы, так сказать, «каналы», внутри которых могут протекать процессы эволюции системы. В свою очередь, множество случайных факторов как бы пытается все время нарушить эти границы, изменить организацию системы. Если ее параметры и состояния не выводятся из предначертанных рамок, механизмы развития носят адаптационный характер. Границы адаптации, т. е. границы этих «каналов», могут быть определены в том случае, если мы достаточно хорошо знаем законы, управляющие развитием.
Но в силу тех или иных причин система может однажды выйти на пересечение «каналов» адаптационного развития. И тогда вступают в действие иные механизмы, которые мы назвали, следуя А. Пуанкаре, «бифуркационными».
Кстати, термин «бифуркация» в последнее время (после работ Уитни и Р. Тома) все чаще стали заменять термином «катастрофа». Поэтому «бифуркационные» механизмы мы можем, следуя современной терминологии, переименовать в «катастрофные».
Итак, на перекрестке «эволюционных каналов» происходит «катастрофа». Характер развития качественно меняется. Возникает несколько новых и различных вариантов развития (эволюции). Этих вариантов столько, сколько новых «каналов» выходит на «перекресток». И что самое главное в характеристике бифуркационного механизма – это неопределенность путей дальнейшего развития: по какому из возможных «каналов эволюции» пойдет дальнейшее развитие, какова будет новая организация системы – это предсказать невозможно! Невозможно в принципе, ибо окончательный выбор пути обусловливается случайным характером неизбежно присутствующих возмущений.
Выделение механизмов адаптации и катастроф позволяет не только дать новую интерпретацию процессов развития. Оно позволяет сделать наглядным один принцип, имеющий важнейшее значение для понимания
процессов самоорганизации вообще и эволюции живого мира в частности. Этот принцип носит название принципа дивергенции – расхождения (или размножения) новых форм организации (метафора – ветвящееся дерево). Покажем, что этот принцип является прямым следствием механизмов бифуркационного типа.Выше мы уже говорили о том, что именно эти механизмы ответственны за неопределенность процесса развития. Как расшифровать подобное утверждение?
Законы природы ограничивают множество возможных (виртуальных, мысленно допустимых) состояний материального мира и форм его организации, которые я условно назвал «каналами эволюции». Подчас берега этих «каналов» могут быть очень близкими – поддержание большинства химических реакций или сохранение гомеостазиса некоего вида возможно только в очень узком диапазоне изменения параметров внешней среды. Однако стохастический характер причинности может с помощью бифуркационных механизмов развести сколь угодно близкие, практически тождественные формы организации в совершенно разные стороны. Этот факт – один из основных источников «некорректностей», которые мы непрерывно наблюдаем в окружающем мире. Его легко интерпретировать на простом опытном материале.
Предположим, что две совершенно одинаковые круглые колонны находятся под действием одинаковых вертикальных нагрузок. Кроме того, на них действуют случайные порывы ветра. Эволюционные процессы каждой из них определяются непосредственным и одинаковым увеличением указанных нагрузок. Значит, у обеих колонн нагрузки достигают порогового значения одновременно. Однако, поскольку порывы ветра никогда не бывают строго идентичными, после потери устойчивости вертикальной формы равновесия новые равновесные формы у обеих колонн будут разными. Это значит, что колебания колонн после бифуркации будут происходить в разных «каналах», в данном случае в разных плоскостях. Вероятность того, что при новой бифуркации равновесные положения колонн совпадут, равна, очевидно, нулю.
С увеличением размерности системы – что всегда бывает при увеличении ее сложности – количество состояний, в которых могут происходить катастрофы, быстро возрастает. Следовательно, чем сложнее система, тем больше вероятность увеличения числа возможных путей ее эволюции (т. е. дивергенции), а вероятность появления двух развивающихся систем в тождественных эволюционных каналах практически равна нулю. Это и означает, что процесс развития (самоорганизации) ведет к непрерывному росту разнообразия форм.
Заметим, что этот вывод о непрерывном усложнении организационных форм касается не только живого вещества. Он справедлив и в неживом мире (о чем мы только что говорили) и сохраняет силу и при переходе к анализу общественных форм организации материн (о чем мы будем говорить позднее).
Примечание. Среди биологов существуют сторонники и другой точки зрения. Например, последователи академика Л. С. Берга утверждали возможность конвергенции, т. е. «схождения», форм. Дискуссии о дивергенции и конвергенции среди биологов не прекращаются и в настоящее время. Мне кажется, что факт существования механизмов бифуркационного типа и установление роли флюктуации в известном смысле закрывают эти дискуссии: ведь вероятность появления идентичных форм организации в процессе развития равна нулю. Кстати, конвергенцию не следует путать со сходством отдельных особенностей (признаков) в организации тех или иных систем, функционирующих в идентичных условиях. Например, морские млекопитающие могут иметь рыбообразную форму; адаптация к внешним условиям порождает гомологические ряды Н. И. Вавилова; структура советских машиностроительных заводов может копировать соответствующую структуру американских предприятий и т. д.
Итак, выше мы сделали попытку использовать дарвиновскую терминологию (естественно, при существенном расширении ее содержания и смысла, принятого в биологии) для описания процессов различной природы. Предложенный подход отражает необходимость выработки общего языка, нужного для дальнейшего расширения фронта исследований системного, междисциплинарного характера.
Создание общенаучного языка описания процессов развития не только облегчает объединение специалистов различного профиля для решения общих задач, но и имеет определенное методологическое, мировоззренческое и эвристическое значение. Возможности аналогий, которые он открывает, имеют немаловажное значение для совершенствования интуиции исследователя.