Чтение онлайн

ЖАНРЫ

Алхимия человеческого духа
Шрифт:

Прежде чем перейти к доказательствам золотого сечения, я хочу продемонстрировать несколько бо-лее общих аспектов того, что происходит в десятичной системе касательно соотношения с 12.

На своем калькуляторе наберите какое-нибудь число (не слишком большое, чтобы на экране остава-лось место; избегайте также «точных значений квадратных корней», т.е. = 3, = 5). Например, вве-дите цифры 6, 7, 2, 5, 3. Затем найдите квадратный корень из вашего числа и прибавьте к нему 5. Затем на-жмите кнопку возведения в квадрат и посмотрите, что произойдет! Иррациональные части двух чисел бу-дут тождественными! Это продолжается до «бесконечности». Это подходит для всех чисел.

Для тех, у кого под рукой нет

калькулятора, я приведу один пример здесь:

Возьмите любое случайное число (мы выбрали 43).

Найдите квадратный корень этого числа:

= 6,557438524…

Прибавьте к нему 5:

6,557438524 + 5 = 11,557438524.

Возведите это число в квадрат:

11,5574385242 = 133,57438524.

Вы видите, что выделенная жирным шрифтом «иррациональная часть» обоих чисел тождественна? Что тут творится? Существует одно алгебраическое тождество, которое объясняет механизм этого. Оно вы-глядит так:

2x (+ x)? (+ x)2 = x2? n,

где n и x — любые числа. (В нашем случае n = 5.)

Чтобы решить это, просто выберите любое значение n и какое-то значение x, затем подставьте его в это выражение, убедившись, что сначала вы складываете цифры внутри скобок. Если x = 5, то 2x = 10. 2x в этом уравнении выступает в роли «десятичного преобразователя» и, таким образом, автоматически «обра-щает иррациональные части двух чисел (+ x) и (+ x)2» в точно такие же ряды. Когда мы вычитаем одно из другого, мы их «уничтожаем», и остается (x2? n).

В отношении класса иррациональных чисел возникают некоторые интересные вещи, но в отношении вопроса о двенадцатиричной системе счисления интереснее вычисление выражения (x2? n). Для десятич-ного основания (где x = 5), x2 = 25. Мы можем использовать это выражение (x2? n) для того, чтобы уви-деть, какие результаты даст ряд различных чисел в области «вариантов». (x2? n) является разницей между двумя числами: 2x (+ x) и (+ x)2. Это выглядит следующим образом:

x2? n (где x = 5).

25? 0? = 25, 25? 2 = 23, 25? 3 = 22, 25? 4 = 21, 25? 5 = 20, 25? 6 = 19, 25? 7 = 18, 25? 8 = 17,

25? 9 = 16, 25? 10 = 15, 25? 11 = 14, 25? 12 = 13, 25? 13 = 12, 25? 14 = 11, 25? 15 = 10, 25? 16 = 9,

25? 17 = 8, 25? 18 = 7, 25? 19 = 6, 25? 20 = 5, 25? 21 = 4, 25? 22 = 3, 25? 23 = 2, 25? 24 = 1,

25? 25 = 0?;

таким образом, можно видеть только положительные варианты для n: это числа от 1 до 24, а число 24 яв-ляется кратным 12. Поскольку x = 5, и мы видели, что это число «превращает дробную часть двух чисел (+ x) и (+ x)2» и делает это в формате системы десятичного счисления, мы также видим, что формат системы десятичного счисления работает в рамках области вариантов 12. Это не совпадение! Вы также мо-жете видеть, что 12 и 13 являются «переключателями» в этой прогрессии (выделены).

Этот вывод подчеркивает функцию «недостающего целого восходящей последовательности» деся-тичной системы в двенадцатиричной. Короче говоря, делает именно то, что должен был б делать, если бы существовала система математики единства. Это предсказуемый результат.

Поиграв немного с вышеприведенным, я решил проверить что будет, если подставить в это тождест-во золотое сечение?. Опять-таки, если существует вероятность связи математики единства и универсальной системы двенадцатиричного счисления, то логично было бы предположить, что она оказалась бы в высшей степени симметричной. Это должно быть так предсказуемо.

Поскольку я искал симметрию с числом 12, я также должен был проверить другие числа, чтобы удо-стовериться, что найден был НЕ общий принцип, который справедлив для всех чисел. Он должен быть применим только к числу 12. Поиск отношений выявил следующее:

12? (+?) = 8,145898034…; 11? (+?) = 7,145898034…; 10? (+?) = 6,145898034…

и т.п.

Как видите, каждое число на единицу меньше, чем предыдущее, и у всех них присутствует общая часть 0,145898034… Проверка квадратных корней этих чисел не дала ничего особого, или каких-либо со-отношений между числами, за исключением 12. Говоря короче, 0,145898034… не играет особой роли для любых целых чисел, за исключением 12, где симметрия проявляется чрезвычайно наглядно??!

Вот четыре из этих отношений:

(+?)? = 1,

Ф [?] = 1,

(1 / Ф) + =,

(+ Ф)2? 12 = или (+ Ф)2? = 12.

Также,

12? (+?) = 8 + [1? (1 /?)]2,

(+?)2? (+?) = 11,

(? /)? (? /)2 = 0,2.

Если учесть, что в десятичной системе 9 является последним целым числом перед новым повторени-ем ряда, которое неотъемлемо присутствует в симметриях десятичной системы счисления, то же должно относиться и к числу 11 в двенадцатиричной системе счисления, как видно из предыдущей страницы.

Резюме

Подводя итог, вспомните, что мы проделали. Мы нашли, что существует класс чисел, порождаемый Единством и Диадой. Мы нашли, что в любой системе счисления в возрастающей последовательности от-сутствует одно целое число, и это свойственно для стандартных математических операций. Это в точности соответствует классу чисел, порождаемых Единством и Диадой. Единство (1) и Диада (2) и среднее цело-численное основания системы счисления (5) играют важную роль во всех математических операциях. Зо-лотое сечение является геометрической константой. Независимо от того, в какой системе счисления оно описывается, оно остается одним и тем же, в какую бы часть Вселенной мы ни отправились. Геометриче-ская константа (?) в десятичной системе счисления выражается через числа 1, 2 и 5, и все числа сводятся к нему.

В отношении обоснованности двенадцатиричной системы счисления особо следует подчеркнуть, что мы нашли алгебраическое тождество, в котором, при работе в десятичной системе, при x = 5, иррациональ-ные части всех квадратных корней «уничтожаются» и положительными границами десятичного ряда явля-ется двенадцатиричный цикл. Мы обнаружили, что подстановка золотого сечения в уравнения подобного типа привели к появлению ряда, обладающего самой совершенной из возможных геометрических симмет-рии, справедливой только для целого числа 12, и дополнительных симметричных рядов, справедливых для узловых целых чисел двенадцатиричной системы. Эти же формулы не дают сколько-нибудь интересных результатов для других целых чисел, показывая, что золотое сечение является особенностью одних лишь операций в двенадцатиричной системе, при помощи двух независимых методов числового и алгебраиче-ского вычисления и стандартных условий деления круга в нечисловой евклидовой геометрии.

Если констатировать факт, что ВСЕ ПРОСТЫЕ ЧИСЛА, большие 3, можно представить в форме 6n±1, то для автора этой статьи кажется непостижимым, что можно, опираясь на логику, выступать против выбора двенадцатиричной системы счисления в качестве универсальной и не произвольной системы для выражения теории чисел.

Вопрос обоснованности двенадцатиричной системы счисления следует вынести на всеобщее рас-смотрение, чтобы ему можно было дать компетентное опровержение. По мнению автора, предоставленные доказательства веско свидетельствуют в пользу того, что двенадцатиричную систему счисления следует принять в качестве «универсальной» и что вся наша система теории чисел, основывающаяся на предполо-жении, что к любому числу всегда можно прибавить единицу (N + 1), содержит в себе серьезную ошибку на уровне ее основ. Продолжать применять математику, основываясь на традиционно принятом прямоли-нейном подходе, означает добровольно отбросить «объективные доказательства» в пользу традиционных предписаний.

Поделиться с друзьями: