Чтение онлайн

ЖАНРЫ

Антрополог на Марсе
Шрифт:

Таинством цветного зрения интересовался и современник Гельмгольца Джеймс Клерк Максвелл. Он сформулировал понятие смешивания цветов, изобретя цветной волчок, поверхность которого, окрашенная в разные цвета, при вращении превращалась в серую, а также цветной треугольник, с помощью которого оказалось возможным получить любой цвет путем различного смешивания трех основных цветов. Эти предварительные работы позволили Максвеллу в 1861 году произвести эффектную демонстрацию получения цветного изображения. Съемка цветного объекта (радуги) проводилась с помощью красного, зеленого и фиолетового светофильтров на не-сенсибилизированную фотопластинку, а затем черно-белые цветоотделенные позитивы через эти же светофильтры проецировались на экран, на котором вспыхнула радуга со всеми присущими ей цветами. Произведя этот опыт, Максвелл задавался и мыслью, как эти цвета воспринимаются мозгом: сложением цветоотделенных изображений или их невральными коррелятами. [18]

18

Продемонстрировав

цветное изображение, полученное от одновременного проецирования на экран красного, зеленого и фиолетового диапозитивов, Максвелл доказал этим справедливость трехкомпонентной теории цветного зрения и одновременно наметил пути создания цветной фотографии. Вначале для этой цели использовались громоздкие фотокамеры, которые расщепляли падающий на них свет на три луча и пропускали их через фильтры трех основных цветов. В шестидесятые годы XIX столетия получением цветного изображения занимался и Дюко дю Орон, а в 1907 г. братья Люмьеры разработали процесс «автохром», при котором использовались растры из окрашенных в красный, зеленый и фиолетовый цвета зерен крахмала, которые располагались между стеклом или пленкой и светочувствительным слоем. При съемке со стороны стекла окрашенные элементы растра служили цветоделящими микросветофильтрами, а в позитивном изображении, полученном путем обращения, — элементами цветовоспроизведения. В сороковые годы XX века, когда я был юношей, все еще были в ходу процессы получения цвета методами Люмьеров, Дюфе и Финлея, и эти работы пробудили у меня интерес к природе цвета. — Примеч. авт.

В 1957 году, почти через сто лет после эффектной демонстрации Максвеллом цветного изображения, Эдвин Лэнд, изобретатель полароида, произвел еще более эффектную демонстрацию такого изображения. Но, в отличие от Максвелла, он сделал только два черно-белых слайда (используя фотоаппарат с расщеплением луча, так что оба снимка были сделаны в одно и то же время из одной точки через одни и те же линзы) и спроецировал изображения на экран с помощью двухлинзового проектора. При съемке Лэнд использовал два фильтра: красный, пропускавший только длинноволновую часть спектра, и зеленый, пропускавший более коротковолновую часть спектра. При проецировании на экран длинноволнового слайда использовался красный луч из длинноволновой части спектра, а для другого слайда — луч белого света. Ожидалось, что на экране появится бледно-розовое изображение. Однако на экране неожиданно появилась цветная фотография женщины, блондинки с голубыми глазами и естественным цветом кожи в красном пальто с сине-зеленым воротником.

Демонстрация Лэндом получения цветного изображения поразила своей простотой и походила на цветную иллюзию, о которой говорил Гете, — иллюзию, продемонстрировавшую неврологическую правду того, что цвета не самостоятельные субстанции и не автоматическая корреляция длины волны луча света, вызывающие ощущение определенного цвета, а субстрат мозга.

Этот эксперимент выглядел как аномалия и не укладывался в существовавшую цветовую теорию, но и не породил новой. Более того, казалось возможным, что знание зрителем существующих цветов может влиять на его восприятие.

Чтобы показать, что не существует ключа для предсказания цвета, который будет увиден, Лэнд решил заменить привычные, естественные изображения окружающего мира абстрактной многоцветной мозаикой, представлявшей собой набор полосок цветной бумаги. Такого рода мозаики напоминали картины голландского художника Пита Мондриана, и Лэнд назвал их «цветными мондрианами». Используя мондрианы, освещавшиеся тремя проекторами, и три фильтра — красный (длинноволновый), зеленый (средневолновый) и синий (коротковолновый) — Лэнд показал, что если на поверхности экрана формируется часть сложной многоцветной картины, то при этом нет простой связи между длиной волны света, отраженного от экрана, и воспринимаемым цветом.

Более того, если отдельную цветную полоску (которую, к примеру, мы обычно видим зеленой) изолировать от окружающих цветов, она будет восприниматься как белая или как бледно-серая вне зависимости от того, какой луч света использовался для ее освещения. Лэнд показал, что такая полоска не может считаться прирожденно зеленой, а свой цвет она получает, взаимодействуя с окружающими ее зонами мондриана.

В то время как, согласно классической теории Ньютона, цвет представлялся локальным и повсеместным и зависел от длины волны света, отраженной от каждой точки объекта, Лэнд показал, что цвет распределен не локально и не повсеместно, а зависит при наблюдении всей картины от восприятия цветов каждой точки объекта и цветового фона. При этом должны иметь место непрерывные связи, сравнение каждой части зрительного поля с его собственным окружением, чтобы получить глобальный синтез — по Гельмгольцу, совершить «акт суждения».

Лэнд показал, что это положение, или корреляция, подчиняется фиксированным, формальным правилам и что он в состоянии предсказать, какие цвета будут восприняты наблюдателем в различных условиях. Он изобрел «цветной куб», алгоритм для осуществления этой цели, а в сущности — модель сравнения мозгом яркости при различных длинах волн всех частей сложной многоцветной картины. В то время как цветовая теория Максвелла и его цветной треугольник основывались на концепции сложения цветов, модель Лэнда основывалась на сравнении.

Он полагал, что при восприятии объекта происходит сравнение двух сигналов: отражения от всей картины определенной группы длин волн или спектра (по

терминологии Лэнда, «световой записи» спектра) и воздействия трех отдельных световых записей для трех длин волн, относящихся грубо к красной, зеленой и синей длинам волн. Этот второй сигнал создает цвет.

В то же время Лэнд старался избегать объяснений процессов, происходящих в мозгу при выполнении этих операций, и очень осторожно назвал свою теорию цветового зрения «теорией ретинекса», подразумевая, что должно существовать многофункциональное взаимодействие между сетчаткой (ретиной) и корой (кортексом) головного мозга.

Если Лэнд приближался к решению загадки цветового зрения на психофизическом уровне, опрашивая людей, как они воспринимают сложную многоцветную мозаику при изменении освещения, то Семир Зеки, ученый, работающий в Лондоне, решал проблему на физиологическом уровне путем внедрения в зрительную кору обезьян микроэлектродов, после чего измерял нейронные потенциалы, генерируемые при появлении цветного стимула, обычно изготовленного из цветной бумаги. В семидесятые годы XX века Зеки удалось найти на уровне циркуметриарной коры обезьян в зоне V4 группу клеток, которая, как он посчитал, реагирует на цвет. Зеки назвал их «цветокодирующими клетками». [19] Таким образом, через девяносто лет, после того как Вилбрандт и Веррей высказали предположение о наличии в мозгу специального центра, отвечающего за восприятие цвета, Зеки доказал, что такой центр действительно существует.

19

В соседней зоне коры Зеки нашел клетки, которые, как он счел, отвечают за зрительное восприятие движения. В 1983 г. интересное сообщение о полном невосприятии движения пациентом было сделано Зилем, фон Крамоном и Маем. Пациентка, за которой они наблюдали, потеряла способность воспринимать движение объектов во всех трех измерениях. К примеру, она затруднялась налить чай или кофе в чашку, потому что жидкость казалась ей замороженной. Когда все же она решалась произвести это действие, она не могла его своевременно прекратить. Пациентка также жаловалась на то, что ей трудно вести беседу, ибо не может уследить за движением губ собеседника. В многочисленной компании женщина старалась не находиться — неожиданная смена людьми их месторасположения ее раздражала. Серьезные неудобства она испытывала и на улице. Перейти дорогу для нее стало проблемой. «Когда я вижу автомобиль, мне кажется, что он далеко, — жаловалась она, — но едва я соберусь перейти улицу, как эта машина неожиданно оказывается вблизи». В конце концов она научилась определять расстояние до двигающейся машины по производимому ею шуму. — Примеч. авт.

Пятьюдесятью годами раньше видный невролог Гордон Холмс, обобщив двести случаев нарушения зрения, вызванного огнестрельными ранениями головы, поразившими зрительную кору, не выявил ни одного случая ахроматопсии. Исходя из этого, он заключил, что цветовая слепота не может возникнуть лишь от одного повреждения зрительной коры. Заключение такого крупного авторитета в области неврологии, каким являлся Гордон Холмс, привело к тому, что проблема потеряла практический интерес. [20]

20

По этому поводу Дамазио заметил, что описанные Холмсом случаи касаются повреждений дорсальной части затылочной доли мозга, что не могло вызвать ахроматопсии. — Примеч. авт.

Положение изменилось после того, как Зеки в семидесятые годы XX века опубликовал ряд работ в области неврологии. После этого в медицинских журналах стали появляться статьи, описывающие новые случаи ахроматопсии с приложением результатов исследований по визуализации мозга с помощью новых технических достижений (аксиальной компьютерной томографии, ядерно-магнитного резонанса, позитронной эмиссионной томографии). В эти годы впервые появилась возможность визуально определить, с помощью каких зон мозга человек воспринимает цветное изображение. Хотя описываемые в литературе случаи часто касались других повреждений зрения (ослабления поля зрения, зрительной агнозии, алексии), повреждения, их вызывающие, как представлялось исследователям, находились в срединной ассоциативной коре, в зонах, соответствующих зоне V4 коры головного мозга обезьяны. [21]

21

Большую работу в этой области проделали Антонио и Ханна Дамазио и их коллеги в университете Айовы. Их отчеты о проведенных исследованиях весьма обстоятельны и убедительны. — Примеч. авт.

В шестидесятых годах исследователи обнаружили в зоне V1 зрительной коры обезьяны клетки, чувствительные к длине волны, но не к цвету. В начале семидесятых годов Зеки обнаружил в зоне V4 клетки, чувствительные к цвету, но не чувствительные к длине волны. Однако эти клетки, указал он, получают импульсы от клеток зоны V1, проходящие через промежуточную зону V2. Таким путем чувствительность популяции зоны V4 покрывает большую часть диапазона видимого спектра.

Поделиться с друзьями: