Чтение онлайн

ЖАНРЫ

Аппаратные интерфейсы ПК. Энциклопедия

Гук Михаил Юрьевич

Шрифт:

Рис. 7.3. Страничный режим считывания EDO DRAM (HPM)

Установка EDO DRAM вместо стандартной памяти в неприспособленные для этого системы может вызвать конфликты выходных буферов устройств, разделяющих с памятью общую шину данных. Скорее всего, этот конфликт возникнет с соседним банком памяти при чередовании банков. Для отключения выходных буферов EDO-памяти внутри страничного цикла обычно используют сигнал

WE#
, не вызывающий записи во время неактивной фазы
CAS#
(рис. 7.4, кривая а). По окончании цикла буферы отключаются лишь по снятию сигнала
RAS#
(рис. 7.4, кривая б).

Рис. 7.4. Управление выходным буфером EDO DRAM

Из

принципиального различия в работе выходных буферов следует, что в одном банке не стоит смешивать EDO и стандартные модули. EDO-модули поддерживаются не всеми чипсетами и системными платами (в большей мере это относится к системным платам для процессоров 486).

В памяти BEDO DRAM (Burst EDO) кроме регистра-защелки выходных данных, стробируемого теперь по фронту импульса

CAS#
, содержится еще и внутренний счетчик адреса колонок для пакетного цикла. Это позволяет выставлять адрес колонки только в начале пакетного цикла (рис. 7.5), а во 2-й, 3-й и 4-й передачах импульсы
CAS#
только запрашивают очередные данные. В результате удлинения конвейера выходные данные как бы отстают на один такт сигнала
CAS#
, зато следующие данные появляются без тактов ожидания процессора, чем обеспечивается лучший цикл чтения. Задержка появления первых данных пакетного цикла окупается повышенной частотой приема последующих. BEDO-память применяется в модулях SIMM-72 и DIMM, но поддерживается далеко не всеми чипсетами.

Рис. 7.5. Страничный режим считывания BEDO DRAM

Вышеперечисленные типы памяти являются асинхронными по отношению к тактированию системной шины компьютера. Это означает, что все процессы инициируются только импульсами

RAS#
и
CAS#
, а завершаются через какой-то определенный (для данных микросхем) интервал. На время этих процессоров шина памяти оказывается занятой, причем в основном ожиданием данных.

7.1.2. Синхронная память — SDRAM и DDR SDRAM

Микросхемы синхронной динамической памяти SDRAM (Synchronous DRAM) представляет собой конвейеризированные устройства. По составу сигналов интерфейс SDRAM близок к обычной динамической памяти: кроме входов синхронизации здесь есть мультиплексированная шина адреса, линии

RAS#
,
CAS#
,
WE#
(разрешение записи) и
CS#
(выбор микросхемы) и линии данных (табл. 7.3). Все сигналы стробируются по положительному перепаду синхроимпульсов, комбинация управляющих сигналов в каждом такте кодирует определенную команду. С помощью этих команд организуется та же последовательность внутренних сигналов
RAS
и
CAS
, которая рассматривалась и для памяти FPM.

Таблица 7.3. Назначение сигналов в микросхемах SDRAM

Сигнал I/O Назначение
CLK I Clock Input — синхронизация, действует по положительному перепаду
CKE I Clock Enable — разрешение синхронизации (высоким уровнем). Низкий уровень переводит микросхему в режим Power Down, Suspend или Self Refresh
CS# I Chip Select — разрешение декодирования команд (низким уровнем). При высоком уровне новые команды не декодируются, но выполнение начатых продолжается
RAS#, CAS#, WE# I Row Address Strobe, Column Address Strobe, Write Enable — сигналы, определяющие операцию (код команды)
BS0, BS1 или BA0, BA1 I Bank Selects или Bank Address — выбор банка, к которому адресуется команда
А[0:12] I Address — мультиплексированная шина адреса. В циклах Bank Activate определяют адрес строки. В циклах Read/Write линии A[0:9] и А11 задают адрес столбца. Линия А10 в циклах Read/Write включает режим автопредзаряда (при А10=1), в цикле Precharge A10=1 задает предзаряд всех банков (независимо от BS0, BS1)
DQx I/O Data Input/Output — двунаправленные линии данных
DQM I Data Mask — маскирование данных. В цикле чтения высокий уровень переводит шину данных в высокоимпедансное состояние (действует через 2 такта). В цикле записи высокий уровень запрещает запись текущих данных, низкий — разрешает (действует без задержки)
VSS, VDD Общий
провод и питание ядра
VSSQ, VDDQ Общий провод и питание выходных буферов. Изолированы от питания ядра для снижения помех

Данные для первой передачи пакета записи устанавливаются вместе с командой

WR
. Данные для остальных передач пакета передаются в следующих тактах. Первые данные пакета чтения появляются на шине через определенное количество тактов после команды. Это число, называемое CAS Latency (CL), определяется временем доступа TCAC и тактовой частотой. Остальные данные пакета выдаются в последующих тактах. Временные диаграммы работы SDRAM приведены на рис. 7.6. Здесь показана команда записи
WR
, за которой следует команда чтения
RD
из той же страницы, предварительно открытой командой
ACT
. Далее страница закрывается командой
PRE
. Длина пакета 2, CL = 3.

Рис. 7.6. Временные диаграммы пакетных циклов SDRAM: А и В — данные для записи по адресу R0/C0 и R0/C0+1, С и D — данные, считанные по адресу R0/C1 и R0/C1 +1

Регенерация (цикл CBR с внутренним счетчиком адреса регенерируемой строки) выполняется по команде

REF
, которую можно вводить только при состоянии покоя (idle) всех банков.

Микросхемы SDRAM оптимизированы для пакетной передачи. У них при инициализации программируется длина пакета (burst length=1, 2, 4, 8 элементов), порядок адресов в пакете (wrap mode: interleave/linear — чередующийся/линейный) и операционный режим. Пакетный режим может включаться как для всех операций (normal), так и только для чтения (Multiple Burst with Single Write). Этот выбор позволяет оптимизировать память для работы либо с WB, либо с WT-кэшем.

Обратим внимание, что внутренний счетчик адреса работает по модулю, равному запрограммированной длине пакетного цикла (например, при burst length=4 он не позволяет перейти границу обычного четырехэлементного пакетного цикла).

Пакетные циклы могут прерываться (принудительно завершаться) последующими командами. При этом оставшиеся адреса отбрасываются, и прерывающий пакет будет иметь полную длину (если его самого не прервут).

В команде

Write
имеется возможность блокирования записи данных любого элемента пакета — для этого достаточно в его такте установить высокий уровень сигнала
DQM
. Этот же сигнал используется и для перевода в высокоимпедансное состояния буферов данных при операции чтения.

Микросхемы SDRAM имеют средства энергосбережения, для управления ими используется вход разрешения синхронизации CKE.

В режиме саморегенерации (Self Refresh) микросхемы периодически выполняют циклы регенерации по внутреннему таймеру и не реагируют на внешние сигналы, поэтому внешняя синхронизация может быть остановлена.

Режимы пониженного потребления (Power Down Mode) устанавливаются при переводе

CKE
в низкий уровень командой
NOP
или
INHBT
. В этих режимах микросхема не воспринимает команд. Поскольку в данных режимах регенерация не выполняется, длительность пребывания в них ограничена периодом регенерации.

Если во время выполнения команды чтения или записи установить

CKE
=L, то микросхема перейдет в режим Clock Suspend Mode, в котором «замораживается» внутренняя синхронизация (нет продвижения данных) и не воспринимаются новые команды.

Для памяти SDRAM ключевыми параметрами являются:

♦ допустимая тактовая частота;

♦ CL (Cas Latency) — число скрытых тактов (2 или 3);

♦ TRCD — задержка RAS-CAS, выраженная в тактах (2 или 3);

♦ TRP — время предварительного заряда RAS;

♦ TRC — минимальное время цикла обращений к строкам одного банка;

♦ TAC — время задержки появления данных на выходе относительно фронта синхросигнала.

По тактовой частоте для SDRAM, применяемой в качестве ОЗУ PC-совместимых компьютеров, имеется три градации: PC66 (поначалу ее так не называли, поскольку другой и не было), PC100 и PC133 для максимальных частот 66,6, 100 и 133 МГц соответственно. Их ключевые параметры приведены в табл. 7.4. В обозначении быстродействия микросхем SDRAM обычно фигурирует TAC; период частоты синхронизации, естественно, не может быть меньше этой задержки. Микросхемы со спецификацией -10 могут устойчиво работать в модулях лишь на частоте 66 МГц. Микросхемы -8 могут работать на частоте 100 МГц, но, в зависимости от модификации, с разной латентностью. Так, например, для памяти Micron микросхемы с маркировкой -8А…-8С могут работать на частоте 100 МГц с CL = 3, a -8D или -8Е — с CL = 2.

Поделиться с друзьями: