Чтение онлайн

ЖАНРЫ

Авиация и космонавтика 2013 03
Шрифт:

Корпус «Малыша» имел цилиндрическую форму и, по мнению летчиков, больше всего напоминал мусорный бак с хвостом. Для защиты от осколков |зенитных снарядов он выполнен из легированной стали толщиной 51 мм (2 дюйма).

Сборка бомбы «Малыш» (Little boy) на о. Тиниан перед боевым применением

Бомба «Малыш» после частичной контрольной сборки. Антенна радиовысотомера установлено

Требование

защиты от зенитной артиллерии после войны было признано надуманным, привёдшим лишь к неоправданному перетяжелению первых атомных бомб. Действительно, попасть в небольшую бомбу, падающую с околозвуковой скоростью, практически невозможно.

Бомба имеет стандартное для американских авиабомб Второй мировой войны довольно громоздкое хвостовое оперение. Длина «Малыша» составляет 3200 мм, диаметр — 710 мм, полный вес — 4090 кг. Бомба имеет один узел подвески. После отделения от самолёта бомба свободно падала по баллистической траектории, достигая у земли околозвуковых скоростей. Никакой парашютной системы, упоминаемой в некоторых популярных книгах, не было. Благодаря передней центровке и большому удлинению, «Малыш» выгодно отличался от «Толстяка» устойчивостью на траектории и, следовательно, хорошей точностью попадания.

Система подрыва бомбы должна была обеспечить её взрыв на высоте 500–600 м над землёй, оптимальной для образования у поверхности мощной ударной волны. Известно, что ядерный взрыв имеет четыре основных поражающих фактора: ударную волну, световое излучение, проникающую радиацию и радиоактивное заражение местности. Последнее максимально при наземном взрыве, когда большинство радиоактивных продуктов деления остается на месте взрыва. Система подрыва должна удовлетворять двум совершенно противоположным требованиям:

1. Бомба должна быть безопасной в обращении, поэтому несанкционированный ядерный взрыв должен быть совершенно исключён.

2. При сбросе над целью должен быть гарантирован взрыв на заданной высоте, в крайнем случае — самоликвидация бомбы при ударе о землю, чтобы она не попала в руки противника.

Основными компонентами системы подрыва являются четыре радиовысотомера, барометрический и временной предохранители, блок автоматики, источник питания (аккумулятор).

Радиовысотомеры APS-13 Арчи обеспечивают взрыв бомбы на заданной высоте. При этом для повышения надёжности блок автоматики подрыва срабатывает при получении сигнала от любых двух из четырех высотомеров. Малогабаритный высотомер Арчи был разработан ранее в лаборатории Альвареса по заказу ВВС как радиодальномер защиты хвоста самолёта, но в этом качестве он не нашёл широкого применения. Дальность действия Арчи составляла 600–800 м; используемый как радиовысотомер, он выдавал команду на подрыв бомбы на высоте 500–600 м. Так как носовая часть бомбы занята массивным стальным отражателем, характерные штыревые антенны Арчи размещаются на боковой поверхности корпуса. Антенны были весьма уязвимы, поэтому при хранении и транспортировке бомбы они снимались. Интересно, что 6 и 9 августа 1945 г., в дни атомных бомбардировок Хиросимы и Нагасаки, чтобы не помешать работе радиовзрывателей «Малыша» и «Толстяка», всей американской авиации, действовавшей над Японией, было запрещено ставить радиопомехи.

Для предотвращения несанкционированного взрыва бомбы служит барометрический предохранитель, который блокирует цепи подрыва на высотах, больших 2135 м. Давление к бародатчику подаётся через снабженные дефлекторами воздухозаборники, симметрично расположенные вокруг хвостовой части бомбы.

Временной предохранитель (таймер) предотвращает срабатывание радиовысотомера по сигналу, отражённому от самолёта-носителя в случае неисправности барометрического предохранителя. Он блокирует цепь подрыва в течение первых 15 с после отделения от самолёта.

Таким образом, автоматика бомбы работает следующим образом:

1. Сброс бомбы осуществляется с высоты 9500-10000 м. Через 15 с после отделения от самолёта- носителя, когда бомба удаляется от него примерно на 1100 м, временной предохранитель включает систему подрыва.

2.

На высоте 2100–2200 м барометрический предохранитель включает радиовысотомеры и цепь зарядки высоковольтного конденсатора подрыва по схеме: аккумулятор — инвертор — трансформатор — выпрямитель — конденсатор.

3. На высоте 500–600 м при срабатывании двух из четырёх радиовысотомеров, блок автоматики подрыва разряжает конденсатор на электродетонатор пушечного заряд а

4. В случае полного отказа всех вышеперечисленных систем, бомба взрывается от обычного взрывателя, при ударе о землю.

Расчетный тротиловый эквивалент (ТЭ) «Малыша» составлял от 10 до 15 кт.

На изготовление первой атомной бомбы, сброшенной 6 августа 1945 г. на Хиросиму, ушёл практически весь полученный к тому времени оружейный уран, поэтому полигонные испытания бомбы не проводились, тем более, что работоспособность её несложной и хорошо отработанной конструкции сомнений не вызывала. Вообще разработка и доводка «Малыша» были практически закончены к концу 1944 г., и его применение задерживалось только отсутствием необходимого количества урана-235. Обогащённый уран с большими трудностями был получен только в июне 1945 г.

По разрушениям в Хиросиме была проведена приблизительная оценка мощности бомбы, которая реально составляла 12–15 кт тротилового эквивалента. Количество урана, вступившего в реакцию деления, не превышало 1,3 %.

На производство 1 кг урана-235 80 % обогащения по технологии 1945 г. требовалось около 600000 кВт-ч электроэнергии и более 200 кг природного урана, соответственно один «Малыш» с урановым зарядом массой 60 кг обходился в 36000 МВт- ч энергии, более 12 т урана и полтора месяца непрерывной работы промышленного гиганта в Ок-Ридже. Именно из-за неэкономичного использования крайне дорогостоящих делящихся материалов, ядерные заряды пушечного типа, впоследствии, были почти полностью вытеснены имплозивными.

После войны история «Малыша» не закончилась. Между августом 1945 г. и февралем 1950 г. было изготовлено пять урановых бомб типа Mk.I, все они были сняты с вооружения уже в январе 1951 г. Вновь о «Малыше» вспомнили, когда флоту США потребовалась малогабаритная атомная бомба для разрушения сильно защищённых целей. Модернизированный вариант «Малыша» получил обозначение Мк.8 и состоял на вооружении с 1952 по 1957 гг.

Другой путь создания атомной бомбы базировался на использовании плутония. Основная трудность в создании плутониевой бомбы заключалась в свойствах самого плутония. Он делится интенсивнее, чем уран, поэтому критическая масса для плутония существенно меньше, чем у урана (11 кг для 239Ри и 48 кг для 235U). Плутоний радиоактивен и ядовит, поэтому при работах с ним нужно использовать средства защиты.

Металлический плутоний имеет малую прочность, в диапазоне температур от комнатной до температуры плавления проходит шесть модификаций строения кристаллической решётки, с разной плотностью и подвергается интенсивной коррозии на открытом воздухе. Кроме того, он постоянно выделяет тепло, которое необходимо отводить. Для преодоления этих черт, детали из плутония приходится легировать другими металлами и наносить защитные покрытия.

Как было сказано ранее, критическое состояние можно получить не только быстрым сближением двух масс (для плутония этот путь не выгоден, в силу ряда причин), но и путём увеличения плотности подкритической массы делящегося материала. Плутоний для этого подходил лучше, чем уран.

Из школьного курса физики мы знаем, что твёрдые тела и жидкости несжимаемы. Для повседневной жизни — это действительно так. Но если приложить ОЧЕНЬ большое давление, то твёрдое тело (кусок плутония) можно сжать. Тогда он достигнет критического состояния, и произойдёт ядерный взрыв. Достичь этого давления можно с помощью взрыва обычной взрывчатки.

Для этого нужно ядро из плутония поместить в сферу из обычного взрывчатого вещества (ВВ). По всей поверхности взрывчатки расположить детонаторы и одновременно их подорвать. Тогда внешняя поверхность сферы будет разлетаться в стороны, а детонационная волна пойдёт внутрь и сожмёт ядерный заряд.

Поделиться с друзьями: