Чтение онлайн

ЖАНРЫ

Бегство от удивлений
Шрифт:

Шагнем дальше в ширь Вселенной. Слушаются ли Ньютона целые звездные города?

В нашей Галактике ученые отыскали изумительно красивые звездные рои — шаровые скопления. Чем ближе к центру скопления, тем больше звезд. Но даже в глубоких недрах его, где на фотографии получается сплошной белый фон, звезды настолько далеки друг от друга, что сталкиваться не могут. Они всегда действуют друг на друга только тяготением. Поэтому скопления и круглы — центральные области притягивают периферийные. Та же причина сделала шарами нашу Землю, Солнце и все планеты.

Даже в галактиках — необозримых скопищах звезд и звездных систем — астрономы находят явные следы мощного

тяготения. Оно действует даже в фантастически гигантских скоплениях галактик, пронизывает всю Вселенную.

На кончике гусиного пера

Самый яркий эпизод торжества идей Ньютона относится к первой половине прошлого века.

Тогдашние астрономы никак не могли втиснуть в рамки ньютоновской теории движение Урана, недавно открытой и самой дальней из известных в ту пору планет. Уран двигался, в общем, так, как требовало «расписание», но в тонкостях нашлись непонятные отклонения. Планета немножко выходила из назначенного курса, слегка искривляла эллипс своей орбиты. Чтобы объяснить эти особенности, астрономы учли в расчетах не только солнечное притяжение, но и тяготение соседних с Ураном планет-гигантов Юпитера и Сатурна. Тем не менее все странности поведения Урана не удалось объяснить. Значит, Ньютон не прав? Его механика в чем-то грешит?

Положение сложилось драматическое.

И вот двое ученых — англичанин Адаме и француз Леверье — независимо друг от друга сделали предположение, которое витало в воздухе и напрашивалось само собой: а нет ли за Ураном еще одной планеты — очень далекой, слабо светящейся и потому еще не замеченной?

Опять заскрипели перья, выписывающие уравнения небесной механики.

Теперь их спрашивали: где искать неведомую планету, вызвавшую возмущения в движении Урана? Уравнения дали свой математический ответ: в такие-то моменты времени загадочная планета должна находиться в таких-то местах неба.

Леверье и Адаме послали расчеты в несколько обсерваторий. И когда астрономы-наблюдатели направили телескопы так, как посоветовали их корреспонденты- теоретики, планета действительно нашлась. Маленькая, едва заметная. Ей дали имя Нептун. И отпраздновали знаменательную победу теории тяготения. Это было в 1846 году.

Спустя 84 года при таких же примерно обстоятельствах американцу Томбо удалось открыть самую далекую из наших планет — Плутон.

На кончике авторучки

Совсем недавно, в 1964 году, произошло еще одно удивительное событие. Уравнения небесной механики помогли американскому астроному Ван де Кампу понять причину ничтожных колебаний Летящей звезды Барнарда — одной из ближайших к нам звезд, названной так за свое быстрое движение.

Казалось бы, раз где-то в космосе летит звезда, так уж пусть она летит по инерции прямо — как велено первым законом Ньютона. А она «болтается». Правда, чуть-чуть — за год на десять угловых секунд, самое большее. Но и этого достаточно, чтобы взяться за вычисления.

Подробная расшифровка колебаний привела к замечательному и долгожданному успеху: впервые с полной достоверностью было доказано существование планеты, вращающейся вокруг далекой звезды. Эта планета, действуя своим тяготением на звезду, заставляет ее мчаться не по прямому, а по слегка волнистому пути.

Ван де Камп выведал немало подробностей о невидимом спутнике звезды Барнарда. Он весьма массивен — в полтора раза тяжелее нашего Юпитера (а Юпитер в 318

раз тяжелее Земли). Путь спутника — довольно вытянутый эллипс. Самое большое расстояние его от звезды Барнарда — 660 миллионов километров. Год — в 24 раза дольше нашего.

Анкета, как видите, получилась довольно полная.

И все это сказано про небесное тело, которое никто никогда не видел и, быть может, не увидит. Такова проницательность науки. Той самой науки, которая началась с опытов Галилея, бросавшего ядра и пули с Пизанской башни. Ведь спутник звезды Барнарда тоже «падает», и по тем же законам!

Впрочем, тут особенно ясно, что и звезда падает — это ее падение ведь и выдало таинственного спутника, показало, что она не одинока. Так и должно быть: звезда тянет спутник, который, в свою очередь, тянет звезду. Действие равно противодействию.

Не видя Луны

Есть анекдот. На экзамене профессор спрашивает студента:

Вы видели Луну?

Нет! — поспешно отвечает студент, мечтающий избавить себя от новых вопросов.

Но даже если бы хитрый студент и в самом деле ни разу в жизни не поднял глаз на Луну, все равно он мог бы немало узнать о ней. По той же самой причине, по которой Ван де Камп открыл и описал невидимый спутник звезды Барнарда.

Важно то, что падает не только Луна, но и Земля. Обе они, влекомые тяготением, стремятся к общему центру масс.

Какие же события вызываются на Земле ее падением на Луну? Очень заметные и существенные. Прежде всего приливы и отливы.

На вопрос: «Почему бывают приливы и отливы?» — часто отвечают: «Очень просто, воду океана притягивает Луна». Считают так: под Луной на океанской поверхности вырастает огромный водяной горб, а так как Земля под Луной вращается, то горб этот перемещается, дабы все время оставаться «подлунным», и набегает в конце концов на берег. Согласны?

Ответ неверен. Если бы дело происходило так, то приливы и отливы наступали бы всего один раз в сутки. А они бывают дважды в сутки.

На самом деле водяных горбов на поверхности Мирового океана два — первый действительно под Луной, а второй в диаметрально противоположной стороне. И вершина второго направлена от Луны. Оба горба сохраняют свое положение в пространстве, а Земля кружится, вот и выходит, что приливная волна дважды в сутки заливает берега.

Но почему же все-таки горбов два, а не один? И почему второй словно бы отталкивается от Луны?

Никакого отталкивания нет. Причина этого явления в том-то и состоит, что Земля вместе с Мировым океаном непрерывно падает в сторону Луны, хоть и не может «упасть», так же как и Луна не может упасть на Землю. Прямо под Луной лунное притяжение сильнее (потому что там океан ближе к Луне) и, значит, больше ускорение падения. «Подлунный» горб падает быстро. А с обратной стороны Земли океан на двенадцать тысяч километров дальше от Луны, там ее тяготение слабее, и вода отстает в падении.

Здесь я задам вам проверочный вопрос (из числа довольно трудных — на нем иногда проваливаются даже студенты-физики).

Кроме лунных, по океану бежит еще пара приливных горбов, рожденных притяжением Солнца. Они гораздо меньше, чем лунные. Почему?

Вертится на языке фраза: потому, что Солнце притягивает воду океанов слабее, чем Луна. Так и говорят иные незадачливые студенты на экзаменах, огорчая терпеливых экзаменаторов, ибо ответ этот грубо ошибочен. Солнце влечет к себе Землю (и все, что на ней есть, в том

числе и океаны) неизмеримо сильнее, чем Луна. Ведь не вокруг Луны, а именно вокруг Солнца обращается наша планета.

Поделиться с друзьями: