Бегство от удивлений
Шрифт:
Благодаря инвариантности интервала я вправе сделать о ленте следующее математическое утверждение, объединяющее точки зрения и Гали и Вали:
l2– c2t2 = l’2 – c2t’2
А из этого равенства после не очень сложных выкладок вытекают знаменитые формулы, называемые преобразованиями Лоренца [10] . Привожу их, по традиции этой книжки, без вывода. Для двух систем отсчета, равномерно движущихся друг относительно друга по прямым параллельным путям, релятивистские длительности явлений и продольные релятивистские длины даются выражениями:
10
По
Здесь t’ — релятивистская длительность, t — собственная длительность, l’ — релятивистская длина, l — собственная длина, с — скорость света, v — относительная скорость систем отсчета.
Формулы просты и красноречивы. Сразу видно, при каких условиях они начинают удивлять: когда относительная скорость вплотную приближается к скорости света. В противном случае, для малых скоростей, с практически беспредельной точностью действуют старинные правила Галилея:
t’=t, l’=l
Я обязан напомнить: описанный мир — не более чем примитивная модель диаграммы настоящих движений. Ведь наши поезда шли только от Москвы и только в сторону Ленинграда. А пространство фигурировало в виде одной только линии — железной дороги, начинающейся в Москве.
Усложняя мир, присоединим к Октябрьской железной дороге Киевскую (считаем, что получится прямая магистраль), но начало всех систем отсчета (отбытие поездов), как и прежде, предполагаем в Москве в московскую полночь. Вот какая будет диаграмма:
Поезда мчатся здесь из Москвы в Киев (влево) и в Ленинград (вправо). Телеграммы — тоже в обе стороны. Световых линий стало две, и они разместились под прямым углом: в Москве как бы вспыхнула молния, и ее свет летит сразу к Ленинграду и Киеву.
Следующее усложнение. К будущему присоединяем прошлое. Ленинградские поезда в полночь проезжают Москву и едут дальше, в Киев. Киевские, минуя в полночь же Москву, следуют в Ленинград. Телеграммы из Киева в Ленинград и из Ленинграда в Киев точно в 0 часов проскакивают через Москву:
Световые линии скрестились. Сверху между ними будущее, снизу—прошлое. А справа и слева — те области мира, куда поезда, подчиняющиеся нашему невообразимому расписанию (все минуют Москву в полночь и от этой мировой точки считают свои времена и расстояния), попасть не могут. Ибо нет в природе поездов, несущихся быстрее света.
Наши диаграммы продолжают оставаться чрезмерно упрощенными. На них лишь те движения, что происходят на единственной прямой линии. Потому-то и удается обходиться лишь одним пространственным измерением — длиной. Но таких движений вокруг почти не найдешь. Разве действительно железнодорожные поезда, да и то если магистраль идеально прямая.
Куда больше вещей движется по поверхности. Например, лодка пересекает наискось реку.
Попробуем изобразить это на диаграмме Минковского (предполагая, что лодка сверхбыстрая). Будут вместо осей расстояний — координатные плоскости, на них оси
длины и оси ширины. Начала обеих систем — на берегу в пункте и в момент старта лодки. Оттуда при старте посылается световой сигнал, который бежит во все стороны и поэтому на диаграмме дает не световую линию, а световой конус. Вот что получится (см. рис.).Построение исполнено точно по правилам Минковского. Следуя им, координатную плоскость лодки пришлось наклонить так, чтобы углы между нею и световым конусом всюду были равны углам между световым конусом и осью времени лодки. Этой оси на чертеже нет. Нарисуйте ее самостоятельно.
Не забывайте, что верх этой картинки — отнюдь не небо. Небу не нашлось места. Вверх идут оси времени, или мировые линии (на диаграмме есть только ось времени берега).
Разберитесь в чертеже. И попробуйте провести проекции секунд и метров берега, лодки, течения. Это любопытно и поучительно.
Занятие, правда, не из простых — больше подходит для десятиклассников. А впрочем, ничего сверхъестественно трудного в нем нет.
Чаще всего физические тела движутся в пространстве в трех взаимно перпендикулярных измерениях (и в длину, и в ширину, и в высоту). Строго говоря, только такие движения и существуют. Самолет облетает гору — и поднимается, и сворачивает; автомобиль делает вираж и прыгает по ухабам; Луна кружит вокруг Земли и вокруг Солнца сразу. Конечно, старое условие остается в силе: мы обсуждаем пока только равномерные и прямолинейные движения. Но и для них наиболее общи объемные системы отсчета.
Поэтому реальная диаграмма Минковского должна иметь в каждой системе не одну и не две пространственные оси, а три — длину, ширину и высоту. И к ним добавится еще ось времени.
Надо, чтобы три пространственные оси расположились под прямыми углами друг к другу (как ребра аквариума). И чтобы ось времени тоже была к ним перпендикулярна— сразу ко всем трем. Этим условиям должен удовлетворять полный — уже без всяких упрощений — мир Минковского.
Увы, как ни старайтесь, такой четырехмерной диаграммы вы не построите. Ни на листе бумаги, ни в объемной модели. Потому что пространство, в котором мы живем, всего лишь трехмерно. Четвертое измерение (время) некуда будет девать: его никак не поставишь перпендикулярно к трем остальным.
Но то, что нельзя построить, можно попробовать вообразить.
Знатоки геометрии умеют, не строя четырехмерных фигур, чертить их проекции на трехмерное пространство или плоскость. [11] Получаются соответственно объемные тела и плоские фигуры. Примерно так же на плоскость (скажем, стену комнаты) или на линию (натянутую нить) падают тени (проекции) объемных трехмерных тел — людей, чайников, стульев и т. д.
Короче говоря, несмотря на то, что уменьшенную копию четырехмерного мира Минковского нельзя нарисовать на бумаге или вылепить из глины, оперировать с ним можно. И составлять с его помощью сложные «расписания» множества сверхбыстрых движений. В расписаниях нас интересуют времена и расстояния, а они как раз и складываются из «теней» — из проекций пространственно-временных интервалов на оси, плоскости, объемы систем отсчета.
11
Это умение не требует особой одаренности, его уже начали прививать ученикам некоторых наших физико-математических школ; нужно развить пространственное воображение и накопить навык.
Так мы добрались до удивительного вообще-то вывода: мир четырехмерен. При жизни Минковского, в годы молодости Эйнштейна это было воспринято кое-кем чуть ли не как божественное откровение.
Тогда, в начале века, широкая публика начала понемножку интересоваться успехами математики, и вошли в моду салонные беседы о многомерных пространствах. Невообразимые, неощутимые, они казались обиталищем таинственных миров-невидимок, которые пронизывают и обнимают нашу скромную трехмерную Вселенную. Многие склонны были видеть в четырехмерности не математическую абстракцию, а нечто потустороннее, мистическое. И, конечно же, по инерции перенесли такое отношение на мир Минковского. А стало быть, и на теорию Эйнштейна.