Бегство от удивлений
Шрифт:
Метеоролог скажет:
Кроме того, он — создатель превосходной теории атмосферных циклонов, видный геофизик, организовавший и .возглавивший у нас службу погоды. Отличный организатор, человек заразительной активности...
Летчик добавит:
Фридман был в рядах первых авиаторов, он энтузиаст воздухоплавания, участник рекордного исследовательского подъема на высоту 7400 метров. Вторым участником был знаменитый Федосеенко, погибший впоследствии вместе с двумя товарищами при штурме 22-километровой высоты...
Астроном или физик-теоретик заключит:
Все это так. Но главная заслуга Фридмана — его работы в области космологии.
Да, этот человек был многогранен,
Но судьба распорядилась так, что самым высоким и прочным памятником Фридману стала именно побочная его работа, родившаяся из непреодолимого интереса к глубинной проблеме теоретической физики — релятивистской космологии. Верный поклонник и тонкий знаток общей теории относительности, Фридман сумел по-своему решить эйнштейновскую систему мировых уравнений. В 1922 году он начал публиковать работы, в которых избавил релятивистский мир от окаменелого покоя, создал общепринятую ныне теорию расширяющейся Вселенной.
Он рано и нелепо умер — от брюшного тифа (в 1925 году, в возрасте 37 лет), ровно через два месяца после уникального и рискованного подъема на аэростате. И долго имя его как космолога оставалось в тени, потому что очень уж парадоксальной казалась выдвинутая им идея. Слава пришла к нему через несколько десятилетий после смерти.
Как шел Фридман к своей теории, придется умолчать. Уместен лишь упрощенный пересказ логической канвы.
По Эйнштейну, из системы десяти мировых уравнений, написанных для Вселенной с «киселем» вещества (равномерным космологическим субстратом), удается извлечь одно. Левая его часть представляет собой произведение двух математических выражений, правая же, как положено в любых уравнениях, есть нуль. С начальных уроков алгебры вам известно: когда произведение равно нулю, обязательно равен нулю один из сомножителей. Вопрос заключается в том, какой именно. Какой сомножитель приравнять нулю?
Тут-то Эйнштейн и сделал выбор между движением и неподвижностью, отдав предпочтение последней. Он приравнял нулю тот из сомножителей, где содержалась величина, связанная со скоростью изменения средней плотности мировой материи. И отсюда, с помощью космологической постоянной, извлек свою модель стационарного замкнутого мира, ту самую, что оказалась потом шаткой и ненадежной.
Фридман же, допустив в принципе нестационарность Вселенной, приравнял нулю другой сомножитель. И получил целый класс новых, неожиданных решений. Все они представляли собой математические функции, изменяющиеся с течением времени.
Здесь законен вопрос: а какого времени? Ведь если материи во Вселенной позволено двигаться, то, надо думать, и времени разрешено претерпевать изменения вместе с движущейся материей — как того требует теория относительности. Можно ли тогда соблюсти строгость, рассуждая об изменении Вселенной в каком-то одном, едином времени? Не возрождается ли ньютоновская абсолютность?
Да, можно. Нет, не возрождается.
Положение спасает эйнштейновский моллюск — деформирующаяся система отсчета. В каждой
точке однородной, лишенной крупных потоков и вихрей, Вселенной мы вправе представить себе моллюск, неподвижный относительно ближайших космических окрестностей — так называемые сопутствующие координаты. В них последовательность мировых событий едина. А потому каждый наблюдатель, покоящийся относительно сопутствующих координат, может пользоваться собственным временем для всей Вселенной. Строение и поведение моллюска как раз и дает космологическую модель мира.Фридмановские модели не могли не двигаться. Мир с необходимостью обрел динамизм. Как же решался вопрос о его конечности или бесконечности?
Допускались обе эти возможности — дело зависело от средней плотности материи. При большой средней плотности вышел мир конечный и пульсирующий, как сердце. Такова закрытая космологическая модель Фридмана. А при малой средней плотности из уравнений вставала открытая модель — бесконечная, способная либо расширяться, либо сжиматься. Причем во всех случаях тем быстрее, чем дальше от наблюдателя.
Эта особенность фридмановских моделей трудновата для наглядного представления: кажется нелепостью расширение сразу изо всех точек или сжатие сразу ко всем точкам (потому что в каждой может находиться наблюдатель). Но надо вспомнить, что речь идет не о движении тел в пространстве—времени, а о деформации самого пространства — времени, самой системы отсчета (моллюска), о преобразовании действующих там метрических правил: чем дальше, тем заметнее становятся изменения метрики. Прочувствуйте это хорошенько, вспомнив сказанное раньше о неевклидовой геометрии, — и будет, я думаю, понятно.
А вот наиболее существенное. В теории Фридмана впервые в истории космологии полностью отсутствовало что-либо специально придуманное, искусственно привнесенное, вроде космологической постоянной, сыгравшей у Эйнштейна и де Ситтера роль Атласа — вседержителя небес и звездного подметальщика. Прямо от земной физики, и только от нее, — ко всему миру. От падающего камня, от розетки Меркурия, от светового луча, согнувшегося возле Солнца, — к безбрежным сонмам галактик. Нет в природе вещей, недоступных взгляду махонькой человеческой науки, — вот что было неявно заявлено в трудах Фридмана. Весь мир, все глубины его познаваемы с крошки Земли!
Эйнштейн к решениям Фридмана отнесся ворчливо. Посчитал их неверными. Был недоволен, написал опровержение в журнал, где они были напечатаны.
Фридман послал Эйнштейну письмо, в котором вежливо спорил. Доказывал свое. Потом с Эйнштейном встретились коллеги Фридмана, советские ученые, работавшие тогда в Германии, и тоже старательно убеждали великого физика.
В конце концов произошло уникальное в эйнштейновской биографии, хоть и закономерное событие: самокритичный, ироничный, чуждый важничанья и упрямства, Эйнштейн признал свою неправоту. Признал безупречную верность решений Фридмана. Извинился перед Фридманом и потом во многих своих статьях ссылался на его исследование.
А как же с космологической постоянной? Дошло до того, что Эйнштейн публично отрекся от нее, как праведник от бесовского наваждения. И объявил ее самой большой из всех ошибок, когда-либо им совершенных.
После этого три фридмановские модели Вселенной — конечная пульсирующая, бесконечная сжимающаяся и бесконечная расширяющаяся — начали жизнь в науке.
Сразу встал вопрос: какой из моделей отдать предпочтение, какая ближе к реальности?
Дилемма решалась на основании конкретных наблюдений и вычислений.